APPENDIX

TABLE OF CONTENTS

- A. ISSP SURVEY COUNTRIES, YEARS, AND SAMPLE SIZE
- B. ISSP FIELDWORK DATES BY COUNTRY-MODULE
- C. POLITICAL EFFICACY TIME TRENDS IN ISSP DATA
- D. EDUCATION AND INCOME VARIABLES, SUPPLEMENTARY INFORMATION
- E. ORDERED LOGIT ESTIMATIONS
- F. CROSS-NATIONAL GENERALIZABILITY OF MAIN FINDINGS
- G. TABLE 1 WITH STANDARDIZED INDEPENDENT VARIABLES
- H. TABLE 2 WITH DISTRICT MAGNITUDE (INSTEAD OF ELECTORAL SYSTEM)
- I. GENDER EQUALITY INDEX AND POLITICAL EFFICACY
- J. DESCRIPTIVE STATISTICS AND DATA SOURCES
- K. APPENDIX REFERENCES

Abbreviation	Country	ISSP Modules	N
AR	Argentina	2006	1,656
AT	Austria	2004, 2014	2,039
AU	Australia	1996, 2004, 2006, 2014, 2016	9,543
BE	Belgium	2004, 2014, 2016	5,614
BG	Bulgaria	1996, 2004	2,133
BR	Brazil	2004	2,000
CA	Canada	1996, 2004, 2006	3,326
СН	Switzerland	1996, 2004, 2006, 2014, 2016	6,900
CL	Chile	2004, 2006, 2014, 2016	5,858
CY	Cyprus	1996, 2004	2,000
CZ	Czech Republic	1996, 2004, 2006, 2014, 2016	6,555
DE	Germany	1996, 2004, 2006, 2014, 2016	9,852
DK	Denmark	2004, 2006, 2014, 2016	5,450
ES	Spain	2004, 2014, 2016	6,070
FI	Finland	2004, 2006, 2014, 2016	5,234
FR	France	1996, 2004, 2006, 2014, 2016	7,266
GE	Georgia	2014, 2016	2,965
HR	Croatia	2006, 2014, 2016	3,226
HU	Hungary	1996, 2004, 2006, 2014, 2016	5,552
IE	Ireland	1996, 2004, 2006	3,060
IL	Israel	2004, 2006, 2014, 2016	3,636
IS	Iceland	2014, 2016	2,819
IT	Italy	1996	1,104
JP	Japan	1996, 2004, 2006, 2014, 2016	7,027
KR	South Korea	2004, 2006, 2014, 2016	5,338
LT	Lithuania	2014, 2016	2,125
LV	Latvia	1996, 2004, 2006	4,576
MX	Mexico	2004	1,201
NL	Netherlands	2004, 2006, 2014	4,454
NO	Norway	1996, 2004, 2006, 2014, 2016	6,788
NZ	New Zealand	1996, 2004, 2006, 2016	5,176
PH	Philippines	2004, 2006, 2014, 2016	4,800
PL	Poland	1996, 2004, 2006, 2014	5,865
RU	Russia	1996, 2004, 2006, 2014, 2016	9,063
SE	Sweden	1996, 2004, 2006, 2014, 2016	5,766
SI	Slovenia	1996, 2004, 2006, 2014, 2016	5,090
SK	Slovakia	2006, 2014, 2016	3,444
SR	Suriname	2016	1,273
TH	Thailand	2016	1,475
TR	Turkey	2014, 2016	3,044
TW	Taiwan	2004, 2006, 2014, 2016	7,594
UK	United Kingdom	1996, 2004, 2006, 2014, 2016	6,970
US	United States	1996, 2004, 2006, 2014, 2016	6,976
UY	Uruguay	2006	1,031
VE	Venezuela	2004, 2006, 2014, 2016	4,453
ZA	South Africa	2004, 2006, 2014, 2016	11,910
			219.297

A. ISSP SURVEY COUNTRIES, YEARS, AND SAMPLE SIZE

	Module 1	Module 2	Module 3	Module 4	Module 5
Argentina	N.A.	N.A.	Aug/1-Apr/5 2008	N.A.	N.A.
Austria	N.A.	Nov-Dec 2004	N.A.	Jun/10 2016	N.A.
Australia*	Feb 1997	Sep/7-Dec/29 2005	Jul/11-Oct/16 2007	May/12-April/16 2015	May/31-May/18 2017
Belgium	N.A.	Mar/17-Jul/12 2004	N.A.	Oct/14-Mar/22 2016	Nov/28-Mar/28 2018
Bulgaria	Feb-May/1997	Jul/15-Jul/26 2005	N.A.	N.A.	N.A.
Brazil	N.A.	Jan/05-Jan/29 2006	N.A.	N.A.	N.A.
Canada	Nov/1-Dec/30 1996	Jan/29-Mar/31 2004	Mar/3-Oct/31 2006	N.A.	N.A.
Switzerland*	May/12-Nov/9 1998	Mar/16-Jul/7 2005	Feb/8-Aug/14 2007	Feb/12-Jul/10 2015	Feb/15-Aug/7 2017
Chile	N.A.	Jun/11-Jul/3 2005	Jun/24-Jul/13 2006	Oct/31-Nov/27 2014	Jul/9-Aug/7 2016
Cyprus	Nov/1-Nov/30 1996	Apr/15-Sep/20 2004	N.A.	N.A.	N.A.
Czech Republic*	Oct-Dec 1996	Sep/27-Oct/29 2004	Oct/19-Nov/27 2006	Apr/11-Jun/20 2014	May/24-Jul/18 2016
Germany*	Feb/29-Jul/1 1996	Mar/2-Jul/12 2004	Mar/18-Aug/21 2006	Mar/24-Sep/13 2014	Apr/5-Sep/18 2016
Denmark	N.A.	Oct/27-Jun/15 2005	Jan/30-May/5 2008	Nov/22-Feb/6 2015	May/15-Jul/19 2016
Spain	N.A.	Aug-Oct 2004	N.A.	Mar/14-May/28 2014	Apr/11-Jun/29 2016
Finland	N.A.	Sep/08-Nov/1 2004	Sep/20-Nov/24 2006	Sep/17-Dec/19 2014	Sep/16-Dec/20 2016
France*	Oct/7-Dec/7 1997	Sep 2004	Sep-Dec 2006	Feb/28-Sep 2014	Feb/9-Sep/30 2016
Georgia	N.A.	N.A.	N.A.	Sep/1-Oct/24 2013	Jun/5-Jul/23 2016
Croatia	N.A.	N.A.	Oct/1-Nov/30 2006	Jan/3-Jan/23 2015	Jul/20-Aug/25 2017
Hungary*	Oct 1996	Dec/3-Dec/20 2004	Jan/5-Jan/23 2006	Jun/13-Jun/18 2014	Apr/14-Apr/20 2016
Ireland	May-Jun 1996	Oct/1-Nov/15 2003	Oct-Feb 2006	N.A.	N.A.
Israel	N.A.	Feb/15-Sep/1 2005	Mar/15-Aug/15 2007	Feb/3-Jun/3 2014	Dec/24-Apr/5 2016
Iceland	N.A.	N.Â.	N.A.	Jul/3-Sep/2 2015	Feb/1-May/10 2017
Italy	Oct/17-Oct/29 1996	N.A.	N.A.	N.A.	N.A.
Japan*	Jul/5-Jul/8 1996	Nov/13-Nov/21 2004	Nov/18-Nov/26 2006	Jun/14-Jun/22 2014	Oct/29-Nov/6 2016
South Korea	N.A.	Jun/24-Aug/30 2004	Jun/25-Aug/31 2006	Jun/23-Oct/18 2014	Jun/27-Oct/7 2016
Lithuania	N.A.	N.Ă.	N.Ă.	Mar/3-Apr/28 2015	Jun/27-Aug/2 2016
Latvia	Sep/12-Sep/16 1996	Nov/24-Dec/16 2004	May/29-Jun/19 2007	N.A.	Aug/27-Sep/25 2016
Mexico	N.A.	Feb/3-Feb/12 2006	N.A.	N.A.	N.A.
Netherlands	N.A.	Dec/12-Mar/31 2005	Mar/15-Dec/15 2006	Apr/1-Sep/30 2014	N.A.
Norway*	Feb-May 1996	Sep/29-Nov/26 2004	Sep/20-Nov/17 2006	Oct/20-Dec/30 2014	Oct/26-Feb/13 2017
New Zealand	Apr/24-Aug/5 1997	Jun/29-Sep/7 2004	Aug/10-Oct/10 2006	N.A.	Jul/11-Dec/19 2016
Philippines	N.A.	Jun/4-Jun/29 2004	Mar/8-Mar/14 2006	Feb/19-Feb/23 2014	Mar/16-Mar/20 2016
Poland	Oct-Dec 1997	Jan 2005	Feb/6-Feb/25 2008	Mar/1-Jun/26 2015	N.A.
Russia*	Apr/8-Apr/30 1997	Feb/26-Mar/15 2005	Jan/3-Jan/22 2007	Aug/1-Aug/5 2014	Feb/16-Feb/23 2016
Sweden*	Feb-May 1996	Feb-Apr 2004	Feb/7-Apr/28 2006	Mar/11-May/30 2014	Oct/10-Dec/12 2016
Slovenia*	Nov-Dec 1995	Oct-Nov 2003	Oct/15-Nov/15 2006	Oct/2-Dec/17 2013	Nov/14-Feb/23 2016
Slovakia	N.A.	N.A.	Oct/7-Oct/28 2008	Sep/17-Oct/28 2014	Oct/13-Nov/28 2016
Suriname	N.A.	N.A.	N.A.	N.A.	Jan/11-Jun/21 2018
Thailand	N.A.	N.A.	N.A.	N.A.	Jun/1-Aug/9 2017

B. ISSP FIELDWORK DATES BY COUNTRY-MODULE

APPENDIX - WHO FEELS THEY CAN UNDERSTAND AND HAVE AN IMPACT? 4

Turkey	N.A.	N.A.	N.A.	Feb/13-Apr/6 2015	Aug/26-Nov/15 2017
Taiwan	N.A.	Apr-May 2004	Jul/16-Sep/18 2006	Aug/4-Nov/16 2014	Aug/7-Nov/27 2016
United Kingdom*	May-Jul 1996	Jun-Nov 2004	Jun/1-Nov/1 2006	Jul/31-Nov/6 2014	Jul/13-Oct/30 2016
United States*	Feb/1-May/25 1996	Aug-Jan 2005	Mar/7-Aug/7 2006	Apr/1-Oct/11 2014	Apr/5-Nov/19 2016
Uruguay	N.A.	N.A.	Nov/6-Dec/23 2006	N.A.	N.A.
Venezuela	N.A.	Mar/22-Apr/8 2004	Nov/13-Dec/5 2006	Jan/19-Feb/8 2015	Sep/2-Oct/4 2016
South Africa	N.A.	Aug-Sep 2004	Aug/22-Oct/10 2006	Jan/1-Mar/31 2015	Jan/25-Apr/30 2017

Note: Countries included in all 5 waves noted by asterisk (*); The fieldwork dates of country-modules that temporally overlap with other modules and are omitted from the module interaction models are noted in *italics*: Brazil-Module 2; Mexico-Module 2; Austria-Module 4; Belgium-Module 4.

C. POLITICAL EFFICACY TIME TRENDS IN ISSP DATA, 1996-2016

Figure C1 displays the over-time trends for all 46 countries, and Figure C2 replicates this visualization while limiting the dataset to the 13 countries that are included in all five modules of the ISSP dataset. Figure C3 and C4 go further and show the trends in external and internal efficacy respectively by country. Taken together, these time trend figures provide consistent evidence of over-time stability in societal mean levels of political efficacy.

Figure C2. External and internal, mean pooled for 13 countries in all modules

Figure C3. External efficacy, mean by country for 13 countries in all modules

ISSP Module

D. EDUCATION AND INCOME VARIABLES, SUPPLEMENTARY INFORMATION EDUCATION

The education variable we analyzed is derived from the following survey question: "How many years (full-time equivalent) have you been in formal education? Include all primary and secondary schooling, university and other post-secondary education, and full-time vocational training, but do not include repeated years. If you are currently in education, count the number of years you have completed so far." For example documentation, see documentation of the 2016 module (ISSP Research Group

2018).

INCOME

The income variable we analyzed is derived from the following survey question: "Before taxes and other deductions, what on average is the total monthly income of your household?"

For example documentation, see documentation of the 2016 module (ISSP Research Group 2018).

To create the income variable, we follow the recent practice of creating a cross-nationally comparable income variable through the following approach: first, we divide respondents into five income quintiles within each country-module survey; second, instead of assuming an equal distance between each income category, we use the midpoint income within each income bracket to code the corresponding bracket; third, we follow Donnelly and Pop-Elches' (2018) approach of summing the lowest income value in the highest income category (whose upper bound is infinite) to the width of the second-highest category, and assigning the

highest income category the value obtained from this calculation¹; finally, we standardize the income variable to a mean of 0 and a standard deviation of 1 by country-module (minimum = -2.00; maximum = 1.87).

With this approach, the resulting income variable allows for a meaningful crossnational investigation of the association of income with respondents' external and internal efficacy. We also conducted a robustness test to account for the number of household members, consistent with Armingeon and Weisstanner's (2022) approach of dividing income by the square root of the number of household members. The results of this additional test, documented in Table D1, are consistent with the results reported in the manuscript.

¹ For example, if the lowest income value for the highest income group (i.e., the fifth income bracket) in a country-module is \$13,000, and the width (i.e., the difference between the highest [e.g., \$13,000] and the lowest [e.g., \$9,000] income values) of the second-highest income group (the fourth income bracket) is \$4,000, the value of the highest income group is \$17,000.

		DV: External Efficacy				DV: Internal Efficacy			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Female	-0.044^{*}			-0.014	-0.295***			-0.277***	
	(0.015)			(0.013)	(0.021)			(0.020)	
Education		0.055**		0.049**		0.043***		0.050***	
		(0.007)		(0.007)		(0.003)		(0.003)	
Income			0.144***	0.084***			0.134***	0.074^{***}	
			(0.012)	(0.008)			(0.010)	(0.007)	
Age				-0.001				0.009***	
6				(0.001)				(0.001)	
Constant	2.482***	1.921***	2.457***	2.059***	3.298***	2.702***	3.100***	2.418***	
	(0.069)	(0.108)	(0.074)	(0.107)	(0.022)	(0.040)	(0.024)	(0.046)	
Country F.E.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Module F.E.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
N	211,508	196,008	166,674	154,048	207,052	191,939	163,503	151,127	

Table D1. Replication of Table 1 in the manuscript with an income variable that accounts for household size

Note. Entries correspond to estimates from linear regressions with country and module fixed effects. Clustered standard errors by country and module in parentheses. All specifications of the model are the same as Table 1 in the manuscript, except for the income variable, which accounts for household size by dividing the income variable by the square root of respondents' household size. Significance levels: *p < 0.05; **p < 0.01; ***p < 0.001.

To facilitate substantive interpretation of the magnitude of the coefficients of the transformed income variable, Table D2 provides examples of the variable's mean levels and standard deviations in two countries in the sample, the United States and the Netherlands.

Table D2.	Values	corresponding	to income of	quantities	of interest i	in selected	countries
		1 0		1			

Country-Module	Group Midpoints	Mean	Standard Deviation
US-Module 5	Group 1: 9,625	\$58,546.66	\$38,753.63
	Group 2: 27,125		
	Group 3: 46,250		
	Group 4: 75,000		
	Group 5: 115,000		
NL-Module 3	Group 1: 925	€2,575.49	€1,194.61
	Group 2: 1,750		
	Group 3: 2,375		
	Group 4: 3,175		
	Group 5: 4,350		

E. ORDERED LOGIT ESTIMATIONS

	DV: External Efficacy				DV: Internal Efficacy			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Female	-0.067**			-0.020	-0.532***			-0.521***
	(0.022)			(0.020)	(0.036)			(0.034)
Education		0.085***		0.075***		0.078^{***}		0.096***
		(0.011)		(0.010)		(0.005)		(0.005)
Income			0.238***	0.144***			0.205***	0.131***
			(0.019)	(0.014)			(0.022)	(0.017)
Age				-0.001				0.018***
U				(0.001)				(0.001)
Cut 1	-1.165***	-0.324*	-1.175***	-0.536***	-2.783***	-1.721***	-2.447***	-1.185***
	(0.098)	(0.155)	(0.099)	(0.152)	(0.058)	(0.069)	(0.059)	(0.091)
Cut 2	0.311**	1.186***	0.320**	0.983***	-1.220***	-0.150	-0.868***	0.437***
	(0.099)	(0.154)	(0.104)	(0.154)	(0.045)	(0.078)	(0.048)	(0.089)
Cut 3	1.097***	1.988***	1.099***	1.776***	0.028	1.104***	0.361***	1.724***
	(0.108)	(0.149)	(0.113)	(0.151)	(0.044)	(0.072)	(0.046)	(0.096)
Cut 4	2.716***	3.627***	2.755***	3.442***	2.285***	3.374***	2.638***	4.093***
	(0.140)	(0.171)	(0.146)	(0.177)	(0.084)	(0.127)	(0.104)	(0.156)
Country F.E.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Module F.E.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
N	211,508	196,008	170,135	157,140	207,052	191,939	166,907	154,168

Table E1. Replication of Table 1 in the manuscript based on ordered logit estimations

Note. Entries correspond to estimates from ordered logistic regressions with country and module fixed effects. Clustered standard errors by country and module in parentheses. All specifications of the model are the same as Table 1 in the manuscript, except for the model specification of ordered logistic regression. Significance levels: *p < 0.05; **p < 0.01; ***p < 0.001.

F. CROSS-NATIONAL GENERALIZABILITY OF MAIN FINDINGS

	External Efficacy		Internal Efficacy
Cyprus -	• • • • • • • • • • • • • • • • • • •	Italy -	- • i
Russia -		Japan -	i i
Bulgaria -	8 I		
i naliano -		Slovakia -	
Croatia -	i	Uruguay	i i
Georgia -		Ireland	I
Japan -	_ _	Germany-	-o- !
Suriname -		South Korea -	
Ireland -	- 0 	Croatia -	- 1
Germany-	- 	Czech Republic –	•
Israel-	- 	Taiwan -	
Lithuania -	θj	United Kingdom –	 i
Latvia -	θļ	Russia -	 !
Spain -		Finland -	
Switzerland -	- - 0 	Slovenia -	
Brazil -		Switzerland -	- !
Iceland -	- 0 -	Argentina	<u></u>
France -	- 0	Bulgaria -	——————————————————————————————————————
Belaium -	ф і	Spain -	o İ
Czech Republic -	<u></u>	Brazil -	 ¦
Slovakia-	— 	Belgium -	— — — —
Slovenia -	<u></u>	Austria -	_ i
Poland -	<mark></mark>	Sweden -	 !
Hungary -		Latvia -	-o- ¦
South Korea -		Hungary -	<u> </u>
Austria -	6	Poland -	
South Africa -	- 	Suriname -	————————— İ
Chile -		Norway -	- i
Netherlands -	e l	Iceland -	
Venezuela -	F	Netherlands -	——————————————————————————————————————
Finland -		United States -	
United States -		Thailand -	!
Norway -		Australia -	- I
United Kingdom -		Mexico	i
		Turkov-	
Canada -		Denmark -	
Donmark -		Lithuania -	i
Deninark Dhilippipos -		Entituania France -	
Now Zoolond		Conodo	
		Canada	
Toiwon		Now Zoolond	
iaiwan-			φ i
Sweden		Vanazuala	
Australia -			
IVIEXICO -			
Uruguay-		Philippines -	
Argentina		South Africa -	
	642 0 .2 .4	6	42 0 .2 .4

Figure F1. Female gender and political efficacy

Note. Entries correspond to average marginal effects with 95% confidence intervals, estimated via linear regressions with module fixed effects and clustered standard errors by module. Each entry corresponds to the effect from a separate country-specific OLS estimation. For external efficacy, the findings show that while the results for external efficacy and gender indicate substantial heterogeneity, these effects cannot be distinguished from zero in most cases. For internal efficacy, the estimates show a consistent pattern of female respondents reporting lower internal efficacy than men, and these effects are quite sizable and statistically significant.

Figure F2. Education and political efficacy

Note. Entries correspond to average marginal effects with 95% confidence intervals, estimated via linear regressions with module fixed effects and clustered standard errors by module. Each entry corresponds to the effect from a separate country-specific OLS estimation. The figures show that education has consistent positive effects, with significant and often substantively sizable associations between education and both types of efficacy across countries.

Figure F3. Income and political efficacy

External Efficacy

Internal Efficacy

Note. Entries correspond to average marginal effects with 95% confidence intervals, estimated via linear regressions with module fixed effects and clustered standard errors by module. Each entry corresponds to the effect from a separate country-specific OLS estimation. Similar to education, the results for income show consistently positive associations with both external and internal efficacy. While there are a few countries for which the effect is close to zero and not statistically significant, individuals with higher income across a varied set of countries tend to report higher external and internal efficacy than lower-income individuals.

G. TABLE 1 WITH STANDARDIZED INDEPENDENT VARIABLES

	DV: External Efficacy				DV: Internal Efficacy			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Female	-0.044*			-0.014	-			-
					0.295^{***}			0.277^{***}
	(0.015)			(0.013)	(0.021)			(0.019)
Education		0.210**		0.186**		0.165***		0.194***
		(0.029)		(0.026)		(0.013)		(0.012)
Income			0.152***	0.090***			0.114***	0.071***
			(0.012)	(0.009)			(0.011)	(0.008)
Age				-0.013				0.158***
0				(0.010)				(0.011)
Constant	2.482***	2.575***	2.479^{***}	2.597***	3.298***	3.216***	3.109***	3.435***
	(0.069)	(0.071)	(0.070)	(0.074)	(0.022)	(0.024)	(0.023)	(0.023)
Country F.E.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Module F.E.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
N	211,508	196,008	170,135	157,140	207,052	191,939	166,907	154,168

Table G. Socio-demographic characteristics and political efficacy with standardized IVs

Note. Table G1 replicates Table 1 in the manuscript, but with relevant non-dichotomous independent variables transformed to standardized variables (i.e., z-scores), namely for education and age. Entries correspond to estimates from linear regressions with country and module fixed effects. Clustered standard errors by country and module in parentheses. Significance levels: *p < 0.05; **p < 0.01; ***p < 0.001.

H. TABLE 2 WITH DISTRICT MAGNITUDE (INSTEAD OF ELECTORAL SYSTEM)

	DV: External Efficacy		DV: Intern	al Efficacy
	(1)	(2)	(3)	(4)
Female gender	-0.082*** (0.019)	-0.092*** (0.020)	-0.309*** (0.023)	-0.300*** (0.024)
% Female MPs	-0.011* (0.005)	-0.009 (0.006)	0.002 (0.003)	0.005 (0.003)
Female gender x % Female MPs	0.003***	0.003***	0.001	0.001
	(0.001)	(0.001)	(0.001)	(0.001)
Age	-0.001*** (0.000)	-0.001*** (0.000)	0.009*** (0.000)	0.008 ^{***} (0.000)
Education	0.046 ^{***} (0.001)	0.046 ^{***} (0.001)	0.051*** (0.001)	0.050*** (0.001)
Income	0.088 ^{***} (0.003)	0.089*** (0.003)	0.071*** (0.003)	0.071*** (0.003)
Year	0.009* (0.004)	0.005 (0.005)	-0.001 (0.002)	-0.003 (0.003)
District magnitude		-0.068 (0.037)		-0.012 (0.018)
Gini		0.008 (0.009)		0.005 (0.005)
GDP		0.083* (0.039)		0.019 (0.021)
Constant	-16.025 (8.949)	-9.085 (10.626)	4.370 (4.635)	8.264 (5.198)
Ν	157,140	141,903	154,168	139,150

Table H. Cross-level interactions: Descriptive representation by gender

Note. Replication of Table 2 in the manuscript, using "district magnitude" as a control variable instead of the measure of "electoral system" reported in the article. Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001

I. GENDER EQUALITY INDEX AND POLITICAL EFFICACY

	External efficacy
	0.000*
Female gender	-0.208
	(0.089)
Gender Equality Index (GEI)	0.024
	(0.013)
Formala and dana CEI	0.002
Female gender x GEI	0.003
	(0.001)
% Female MPs	-0.013
	(0.007)
Flectoral system	0.300*
Electoral system	-0.390
	(0.104)
Gini	-0.002
	(0.019)
CDP	0.060
ODF	(0.009)
	(0.051)
Age	-0.001***
0	(0.000)
Education	0.050***
Education	(0.001)
	(0.001)
Income	0.107***
	(0.005)
	0.001
Year	0.001
	(0.007)
Constant	-1.753
	(14.507)
N	62,564

Table I. Impact of gender equality on gender gaps in political efficacy

Note. Analyses use the Gender Equality Index (GEI), a country-level indicator of gender equality. Estimates based on a three-level model, with a country-level random slope for gender, and an interaction between gender and the GEI, controlling for women's descriptive representation. The coefficient is in the expected direction (i.e., smaller gender gap under higher gender equality), but not significant at conventional levels. Standard errors in parentheses. * p < 0.05, ** p < 0.01, **** p < 0.001

Figure I. Impact of gender equality on gender gaps in political efficacy

Note. Figure displays average marginal effects of Table I. Analyses use the Gender Equality Index (GEI), a country-level indicator of gender equality. Estimates based on a three-level model, with a country-level random slope for gender, and an interaction between gender and the GEI, controlling for women's descriptive representation. The coefficient is in the expected direction (i.e., smaller gender gap under higher gender equality), but not significant at conventional levels.

Variable	Mean	S.D.	Min	Max	Ν
Individual-level					
External efficacy	2.70	1.30	1.00	5.00	211,758
Internal efficacy	3.30	1.08	1.00	5.00	207,293
Gender	0.53	0.50	0.00	1.00	218,959
Education	11.94	3.83	0.00	21.00	202,324
Age	47.14	17.23	18.00	102.00	216,200
Income	-0.00	1.00	-2.00	1.87	175,053
Country-level					
% Female MPs	24.36	11.02	4.60	47.28	219,297
Electoral system	1.14	0.65	0.00	2.00	219,297
District magnitude (log)	1.67	1.47	0.00	6.11	206,093
Gini	33.31	9.17	23.10	63.30	219,297
GDP(log)	26.71	1.62	22.11	30.56	210,699
Gender Equality Index	64.87	7.93	52.50	76.87	90,709

J. DESCRIPTIVE STATISTICS AND DATA SOURCES

Table J2. Country-level data sources

VARIABLE (variable name)	INFORMATION
% of Female MPs (share_women)	Measure of the percentage of female MPs in the lower (or unicameral) chamber of the legislature. Source: Varieties of Democracy (V-Dem), variable: v2lgfemleg
Electoral system (system)	What was the electoral system used in this election for the lower or unicameral chamber of the legislature?Categories: 0. Majoritarian 1. Proportional 2. MixedSource: Varieties of Democracy (V-Dem), variable: v2elparlel
District Magnitude (magnitude_log)	For this election, what was the average district magnitude for seats in the lower (or unicameral) chamber of the legislature? Source: Varieties of Democracy (V-Dem), variable: v2elloeldm
Gini (gini_disp)	Estimate of Gini index of inequality in equivalized (square root scale) household disposable (post-tax, post-transfer) income, using Luxembourg Income Study data as the standard. Source: Standardized World Income Inequality Database (SWIID)
GDP (gdp_log)	Measure of the country's GDP in current US\$. Source: World Bank, variable name: NY.GDP.MKTP.CD
Gender Equality Index (gei)	Measure of gender equality through a selection of 31 indicators divided into six core domains (work, money, knowledge, time, power, and health.Source: the European Institute for Gender Equality (EIGE 2023).

K. ONLINE APPENDIX REFERENCES

- Armingeon, K., & Weisstanner, D. (2022). Objective conditions count, political beliefs decide: The conditional effects of self-interest and ideology on redistribution preferences. *Political Studies*, *70*(4), 887-900.
 https://doi.org/10.1177/0032321721993652
- Donnelly, M. J., & Pop-Eleches, G. (2018). Income measures in cross-national surveys: Problems and solutions. *Political Science Research and Methods*, 6(2), 355-363. https://doi.org/10.1017/psrm.2016.40
- ISSP Research Group (2018). International Social Survey Programme: Role of Government V - ISSP 2016. GESIS Data Archive, Cologne. ZA6900 Data file Version 2.0.0, https://doi.org/10.4232/1.13052.