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ABSTRACT

We consider estimation of two-level latent class models for clustered data, when the measurement
model for the observed measurement items includes non-equivalence of measurement with respect to
some observed covariates. The parameters of interest are coefficients in structural models for the
latent classes given covariates. We propose a two-step method of estimation. This extends previously
proposed methods of two-step estimation for models without non-equivalence of measurement by
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specifying the model used in the first step in such a way that it correctly accounts for non-equiva-
lence. The properties of these two-step estimators are examined using simulation studies and an

applied example.

1. Introduction

The methodological research question that is considered in
this article is the following: How can we estimate multilevel
latent class models with covariates when there is non-
equivalence of measurement in some of the measurement
items, using the two-step method of estimation? How well
do these estimates perform? We begin by briefly introducing
the key terms in this statement.

Latent class (LC) analysis (Goodman, 1974; Lazarsfeld &
Henry, 2004) is used to classify units into subgroups based
on multiple observed categorical variables. The LC model
takes these observed variables (items) to be indicators of a
categorical latent variable of interest (latent class). For
example, Oser et al. (2023) used LC analysis to identify
types of citizenship norms measured by responses to mul-
tiple survey questions about different democratic values.

In applied LC analysis, substantive research questions
commonly focus on associations between external predic-
tors, or covariates, and the probabilities of belonging to the
different latent classes. This is operationalised in terms of
regression models for the classes given the covariates. For
example, Oser et al. (2023) used socioeconomic predictors
to describe how individuals sort into citizenship norms. The
model then combines two elements: a measurement model
for how the items measure the latent classes, and a struc-
tural model for how the latent classes depend on the
covariates.

Basic LC modelling assumes that the units of analysis are
independent of each other. This is insufficient when we
have hierarchical data where lower-level units (such as indi-
vidual respondents) are nested (clustered) within higher-level

units (groups). The nesting can extend to still higher levels,
but our discussion is limited to the case of two-level hier-
archical data. It is assumed that units in different groups are
independent of each other, but that lower-level units within
the same group need not be independent even conditional
on the covariates.

Within-group dependencies can be accommodated by
introducing another latent variable which varies at the
higher level. When it is categorical, i.e., a higher-level latent
class variable, we have a multilevel latent class model
(Vermunt, 2003). For example, Di Mari et al. (2023) used
multilevel LC analysis to identify citizenship norms within
countries, finding two country-level clusters with different
prevalences of the individual-level classes of citizenship
norms. The higher-level variable is analogous to continuous
random effects in multilevel models which include such vari-
ables (see e.g., Rabe-Hesketh & Skrondal 2022 for examples
of them). Multilevel LC models can include covariates as
predictors of both higher- and lower-level latent classes.
Most often substantive interest is focused on the lower level.
For instance, Di Mari et al. (2023) identified socioeconomic
predictors of individual-level norms.

We consider likelihood-based estimation of the models.
In standard maximum likelihood (ML) estimation, or one-
step estimation, all the parameters are estimated simultan-
eously. In contrast, stepwise estimation divides estimation of
the measurement model and the structural model into sep-
arate steps. The one-step approach has the standard opti-
mality properties of ML estimation, but it also has serious
drawbacks (see the discussions in Vermunt, 2010 and Bakk
& Kuha, 2018). Practically, it can be computationally
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demanding and will require the same computational effort
every time the model is changed and re-fitted. Conceptually,
estimating the measurement and structural models together
has the disadvantage that they will affect each other. Any
changes to the structural model, such as adding or removing
covariates or changing their functional form, will also
change the estimated measurement model, and hence the
implied definition of the latent classes. These changes can
be so large that they render comparisons of different struc-
tural models effectively meaningless.

Stepwise estimation avoids or reduces the disadvantages
of the one-step method. It begins by estimating just the
parameters of the measurement model (step 1). Different
stepwise methods differ in what happens next. Three-step
estimation assigns observations to the latent classes based on
the estimated measurement model (step 2), and then fits the
structural model for these assigned classes (step 3). Bias-
adjusted three-step estimation employs further adjustments
to correct for misclassication bias that would arise from
naive use of step 2 (see the review in Bakk & Kuha, 2021
and references therein).

In contrast, stepwise two-step estimation does not assign
predicted latent classes, but estimates (in its step 2) the
structural model directly from a likelihood where the meas-
urement-model parameters are fixed at their estimates from
step 1. Two-step estimation for LC models was first pro-
posed by Bandeen-Roche et al. (1997) and Xue and
Bandeen-Roche (2002), and further developed by Bakk and
Kuha (2018). The same idea can also be applied to latent
variable models which have continuous rather than categor-
ical latent variables (Kuha & Bakk 2023; Rosseel & Loh,
2024).

For multilevel LC models, stepwise methods have been
proposed using a bias-adjusted three-step (Lyrvall et al.,
2024), an intermediate “two-stage” (Bakk et al., 2022), and
the two-step approaches (Di Mari et al,, 2023). We regard
the two-step method as the preferred approach because of
its simplicity and good performance in previous studies.

A latent variable model has the property of measurement
equivalence if the measurement model for the items depends
only on the latent variables but not on any covariates or
observed response variables. Violation of this, where meas-
urement is affected also by observed external variables, is
known as measurement non-equivalence, also known as non-
invariance of measurement or differential item functioning
(DIF). It can arise, for example, in cross-national surveys
from differences in translation or in educational testing
from differences in familiarity of test questions for different
groups of students which are unrelated to their ability. In
the illustrative example that we consider in Section 5 of this
paper, we allow for possible non-equivalence in survey ques-
tions on citizenship norms which may arise from differences
in the salience of different civic activities in countries with
higher or lower levels of political freedom. There is a large
literature on issues of non-equivalence in different applica-
tions and for different types of latent variable models (see
e.g., Millsap 2011 and Kankara$ et al. 2011, and references
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therein). Masyn (2017) discusses it for LC models, and pro-
vides definitions and model specifications.

If there is non-equivalence in the measurement, estima-
tion which ignores this will yield biased estimates also for
the structual model. Studies by Asparouhov and Muthén
(2014), Janssen et al. (2019) and Di Mari and Bakk (2018)
show that this bias can be large for latent class models. It is
thus often crucial to correctly account for any non-equiva-
lence in model specification and estimation.

One-step estimation in this situation is still standard ML
estimation, now for a model which includes covariates also
in the measurement model. For stepwise methods, Vermunt
and Magidson (2021) described how bias-adjusted three-step
estimation can be implemented for single-level LC models
with non-equivalence of measurement. Their key point is to
specify the model for its step 1 correctly. This should
include those covariates which affect the measurement
model, and include them in both the measurement model
and the structural model (they should then also be appro-
priately accounted for in steps 2 and 3).

Vermunt and Magidson (2021) also note that what they
propose for three-step estimation would also be the correct
form for step 1 of the two-step method. In this paper we
follow up on that point. We combine the elements from
previous literature described above, and extend them to
develop two-step estimation which allows for non-equiva-
lence of measurement and which can be applied to single-
level and multilevel LC models.

The model is defined in Section 2 of the paper, and in
Section 3 we describe how the estimation is implemented.
We then evaluate the performance of the method through
simulation studies in 4 and illustrate it further with an
empirical example in Section 5.

2. Multilevel Latent Class Model with Covariates
and Measurement Non-Equivalence

Here we give a formal definition of the model that was out-
lined in Section 1. We define its elements in steps, finishing
with the introduction of non-equivalence to the measure-
ment model.

Consider hierarchical data where lower-level units (indi-
viduals) j=1,...,n; are nested in higher-level units
(groups) i=1,...,I. Let Y, h=1,...,H, be the values
of H observed variables (items) for lower-level unit j in
higher-level unit i, and define Y; = (Yj1. ....Y;). Here
each Yijp is a categorical variable, with possible values r =
L, ...,Ry. Let Z;; = (Z?’,ij’)/ be a vector of observed cova-
riates, where the variables in Zf (lower-level covariates) can
vary between different lower-level units within the same
higher-level unit but Z (higher-level covariates) vary only
between the higher-level units. We take Z7 to include a
constant 1, thus introducing an intercept term to all the
regression models described below.

The items Y;; are regarded as observed indicators of a
discrete latent variable X;; with categories (latent classes) t =
1, ..., T. The standard latent class (LC) model specifies the
joint probability function of Xj; and Y; as P(Y;,Xj) =
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P(X;j)P(Y;j|Xj;). This has two basic elements, the structural
model P(X;;) for the probabilities of the latent classes, and
the measurement model P(Y;|X;;) for how the items meas-
ure the latent classes. We make throughout the assumption,
which is standard in LC analysis, that Yjj, for different  are
conditionally independent of each other given the latent
class. The measurement model can then be written as

’J|XIJ HP l]h|XlJ (1)

Next, the model is extended to accommodate the hierarch-
ical structure of the data. This is done by expanding the
structural model to P(Xj, W;) = P(W;)P(X;|W;), where W;
is another categorical latent class variable, with categories
m =1, ...,M. It varies only between higher-level units i, so
we refer to it as the higher-level LC variable and X;; as the
lower-level LC variable. It is assumed that Y; and W; are
conditionally independent given Xj;, and that Xj; for the same
i are conditionally independent given W;. Averaged over
P(W;), however, values of Xj; for different j within the same
group i will be associated because they share the same W;. In
this sense, W; is a categorical analogy of continuous random
effects in multilevel (random effects) models, and the model
is referred to as a multilevel (here two-level) LC model.

We then introduce covariates to the structural model, as

P(Xyj, Wi|Z;j) = P(WH|Z])P(X| Wi, Zy), 2)

noting that higher-level classes W; can only depend on
higher-level covariates Z!' but lower-level classes X can
depend on both lower- and higher-level covariates. We spe-
cify these models as the multinomial logistic models

/ ZH
P(W; = m|zl') = M wd O
Zl 1 exp (4 Z i)
exp (Y yA
P(Xl] = t|W1 = m’ZIJ) — S p( tlml 1]) , (4)
D e—1 €XP (y5|mzij)
where a,, and Ve|m for m=1,...,Mand t=1,...,T are

parameter vectors, and a; =0 and y;,, =0 for all m for
identifiability. The specification may include constraints on
the parameters, for example when some of them are 0 or
when matching elements of y,,, are equal for all m. Often
the focus of substantive interest is on model (4) for the
lower-level latent class Xj;, and the higher-level class W; is
regarded just as a random effect to allow for within-group
associations between Xj. In that case, model (3) will often
include just the intercept terms a,,;, = Ol,.

The model defined by (1) and (2) is a standard multilevel
LC model with covariates (Bakk et al., 2022; Di Mari et al,,
2023; Lyrvall et al,, 2024; Vermunt, 2003). A key feature of it
is that the measurement model (1) does not depend on Zj;.
This can be relaxed by introducing covariates also to this, as

HP l]h‘Xl]’ Uh)

where the models for the individual items are multinomial
logistic models

P(Y;|Xyj, Zyy) =

. exp (07, Z;)
P(Yljh = r|X1] = t, Zl]h) = R, rll el . (5)
Zq:l exp (5hq\tzijh)
for r=1,...,Ry, and dy,; are parameter vectors with

Op1)e = 0 for all h, t. This kind of measurement model for
item Y}, is non-equivalent with respect to the covariates in
Z;,- We write this with the subscript h to denote only those
elements of Z which do affect the measurement model for
the hth item. This is useful for clarity, because it is very
common that these include only a subset of the variables in
Z, and that they are different for different items. There may
be parameter constraints, for example so that the coeffi-
cients of Z:;h (except for the intercept) do not depend on
latent class ¢, or that even for the same h they may be non-
zero for some latent classes but zero for others. If Zj,
includes only the constant 1, measurement of item Yy, is
equivalent with respect to all of the covariates.

Let Y; = (Y}, ....Y},) and Z; = (Z}, ..., Z;, )" denote all
the observed values of the items and the covariates for higher-
level unit i. The model for these observed data is obtained by
averaging over the distributions of the latent W; and X, as

ijs
(Y'|Zi;9>

M
=> | P(W; = m|Z}; 0,) XH{ZPX,]—ﬂW

m=1

H
= m, Z;j; 0,) lHP(Y,mX,J t, z;;h,ol)] })
h=1

where we have also introduced parameters 6 = (6/.0,)" into
the notation. Here 0, denotes all the parameters of the
measurement model, i.e, the & s in (5), and 6, all the
parameters of the structural model, i.e., the o s and y s in
(3) and (4).

Model (6) is a multilevel (here two-level) latent class
model with covariates and with non-equivalence of meas-
urement. What we examine in this paper is two-step meth-
ods of estimating the parameters of this model, with focus
on the structural parameters 6,. In the general presentation
of the method in Section 3 we take the choice of
Zy, ... Ly as given, ie, we assume that it has already
been determined which covariates are needed to allow for
non-equivalence of measurement in different items. Model
selection procedures for deciding on this are described by
Masyn (2017) and Vermunt and Magidson (2021); an illus-
tration of them is included in our applied example in
Section 5. We also assume that the specification of the
measurement model is such that the parameters of the
structural model are formally and practically identified. This
requires, in essence, that the non-equivalence should not be
too extensive, at a minimum that it does not affect all of the
items in Yj;.

3. Two-Step Estimation of the Model Parameters

The Y; for different higher-level units i are taken to be con-
ditionally independent given Z;. The log-likelihood function



for the model that was defined in Section 2 can then be
written as /() = /(0,,0,) = S.._, log P(Y;|Z;;0), where
P(Y,|Z;; 0) is given by (2) combined with (3)-(5).

One-step maximum likelihood (ML) estimates of the
parameters are obtained by maximizing /(0) with respect to
all of 0 at once. In contrast, two-step estimation divides the
estimation into two steps. In its step 1, an estimate 0, of
the measurement parameters is obtained. In step 2, esti-
mates 0, of the structural parameters are obtained by
maximizing /(6,,6,) with respect to 8,, i.e., using the same
log-likelihood as for one-step estimation but treating now
the measurement parameters 6, fixed at their estimated val-
ues 0; from step 1.

This idea of two-step estimation has been examined for
single-level latent class models by Bakk and Kuha (2018)
and for multilevel LC models by Di Mari et al. (2023).
What is new here is that we want to extend it to the case
where the model includes non-equivalence of measurement.
The key question is then how step 1 should be carried out.
The general answer is that it should use the simplest model
that allows valid estimation of 6,. To present this, we write
now Zj = (Z}.Z;/)', where Z; denotes the union of Zj,
over h, i.e., those covariates that appear in the measurement
model for at least one item, and Zl‘.} denotes those covariates
that do not appear anywhere in the measurement model.
Let p(Z};|Z;) denote the conditional joint distribution of Z;}
given Z;. The conditional distribution for the latent class
variables and the items given Z; only is obtained by mar-
ginalising over this, as

P(Yij) Xij) W1|Z:;, 01) 0;)
= [/ PO Wiz}, ;3 00)p(Z)1Z;)dZ)] P(Yy1XZ5:01)
P(Xj, Wi|Zj;; 0,) P(Y;5|Xi5, Z;;; 0,

P(Wi|Z{™; 85) P(Xy| Wi, Zj;; 03) P(Y 4] X5, Z7 01

(7)

This is of the same multilevel LC form as the full model
given Z; which led to (2). The two have different structural
models, since (7) is conditional on Z} only (so we denote
its structural parameters by 6, rather than 6,). Crucially,
however, both have the same measurement model
P(Y;|Xy5 Z;;0,), with the same 6. The measurement
parameters 6; can thus be estimated from this, using an
observed-data log likelihood that is obtained by marginalis-
ing (7) over X and W;, This is the key result that was
derived by Vermunt and Magidson (2021) for step 1 of
three-step estimation for single-level LC models, and it
holds also for two-step estimation for the multilevel models
that we consider here. Vermunt and Magidson (2021) also
observed that the same result holds even if the model
includes observed variables that are treated as distal out-
comes rather than covariates, even when they depend on
the items Yj; this is because they would be integrated out
from an expression like (7). If the model has full measure-
ment equivalence, i.e., Z} includes only the constant 1, (7)
integrates out all the covariates. The step-1 model is then a
multilevel LC model without covariates, as in Di Mari et al.
(2023).
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We note that this derivation involves one approximation.
This is that if the structural models given Z; are multi-
nomial logistic models as in (3) and (4), they will in general
be only approximately of a multinomial logistic form given
a smaller set Z;; (unless this is empty or includes only a sin-
gle categorical variable). We do not expect that this will
have a meaningful impact on the quality of the step-1 esti-
mates of 0; (we note also that the same inconsistency arises
whenever any multinomial logistic models are fitted given
different sets of covariates, even for observed response
variables).

In summary, when there is non-equivalence of measure-
ment with respect to covariates Z;}, step 1 of two-step esti-
mation should be for a model which includes these Z;} in
both the structural model and the measurement model. This
is still simpler than one-step estimation if Z;} is smaller than
the full set of covariates Z;. Estimates 0, of the measure-
ment parameters from this step 1 are carried forward to
step 2 (and estimates of the structural parameters 6 are dis-
carded). Two-step estimates 0, of the structural parameters
are then obtained from step 2 by maximizing /(60,,0,) with
respect to 0,.

For estimation of standard errors of 6,, two broad
approaches are possible. One of them accounts for sampling
uncertainty in 0; by including a term corresponding to this
in the standard error calculation (Bakk and Kuha 2018; Di
Mari et al. 2023). The other, simpler approach, omits this
term, in effect taking the estimated measurement model
from step 1 as an a priori fixed definition of the latent
classes (see Kuha and Bakk 2023 for a discussion of these
options). In our applied example in Section 5 we use this
simpler approach to calculate the standard errors.

4, Simulation Study
4.1. Design

We use a simulation study to examine the performance of
the proposed two-step method of estimation for multilevel
latent class models with measurement non-equivalence
(abbreviated MNE below). We focus on results for estimated
parameters of the structural model for the lower-level classes
(model (4) in Section 2), because this is typically the focus
of substantive research questions in applications of multi-
level LC models. Our primary question of interest is how
well the estimates perform when MNE is correctly specified
in the measurement model, and a secondary question is
how much bias they have when MNE is incorrectly ignored
and equivalence of measurement is assumed. For both of
these questions, we also use one-step estimation as a
comparator.

Two main factors are varied in the simulation settings:
separation of the latent classes (ie., the strength of the
measurement model) and magnitude of the MNE. It is well
known for models without MNE that estimates behave bet-
ter when the classes are more clearly separated (Bakk &
Kuha, 2018; Di Mari et al, 2023; Lyrvall et al, 2024;
Vermunt, 2010), and we would expect the same to be the
case here. Similarly, we expect that estimation is more
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demanding if non-equivalence is more pronounced. A ques-
tion of interest is then how large these differences may be.

Each simulated sample has I = 100 higher-level units i
and n; = 100 lower-level units j in each i. Each higher-level
unit belongs to one of two known groups, identified by an
observed variable G; = 0,1. The value of G; is drawn at ran-
dom for each i, with probability P(G; =1)=0.5. Non-
equivalence of measurement may exist between these
groups. This structure might correspond, for example, to a
multicultural educational study where the higher-level units
are schools, lower-level units are students, and the two
groups are two different languages of instruction in the
schools.

We consider models with T = 3 lower-level latent classes
(categories of Xj;) and M = 2 higher-level latent classes (cat-
egories of W;). Model (3) for W; has no covariates, i.e.,
Z" =1, and we set P(W; = 1) = 0.6 and P(W; =2) = 0.4.
Model (4) for X;; has G; as its only covariate, ie., Z;j =
(1,G,)". The intercepts of this model are set so that,
averaged over the distribution of G;, we have
P(Xj; =1|W; =1) = P(X;; = 3|W; =2) = 0.18, P(X;; = 2]
1) = P(X; = 1|W; = 2) = 0.51.

In all of the simulations, in the model for Xij all coeffi-
cients of G; (i.e., in all Vejm D (4) for t =2,3 and m = 1,2)
are equal to 0.5. The estimated model correctly assumes that
these coefficients do not vary by the higher-level class m, so
that the model has two estimable coefficients of G;. These
are the parameters we focus on, considering all of their esti-
mates together.

The lower-level latent class is measured by H = 6 binary
items Yj; for h=1,...,H, each with values 0 and 1.
Consider the item response probabilities 7, = P(Yij, =
1|X;; = t,G; = g). Here for simplicity we write G; in place
of the covariates Z7, because in all cases where there is
MNE we have Z;}h = (1,G;) (and when there is no MNE,
Z;}h =1 and w0 = Tp(1)- In all settings (), has a high
value (> 0.5) for all items & = 1 — 6 in the first lower-level
class (t = 1), for items 1-3 in class t = 2 and for no items
in class t =3, and low probabilities (< 0.5) otherwise. In
different simulations we then allow MNE by group G; for
some of the my(),. The strength of class separation and
magnitude of MNE are determined by how these probabil-
ities vary and how far they are from 0.5.

We consider simulation conditions with weaker and
stronger lower-level class separation separately for low and
high values of m ), resulting in four settings for class sep-
aration. These are combined with three conditions for
MNE—none, weak and strong—resulting in 12 simulation
conditions in total. When there is MNE, it affects the meas-
urement models of some items in latent classes 1 and 2 but
none of them in class 3. In the weaker MNE condition,
classes 1 and 2 have MNE for items h = 1,2. In the stronger
condition, class 1 has MNE in items 1-4 and class 3 in
items 1-3. Thus MNE here affects only those probabilities
Tiy(1)g that are greater than 0.5. In each case its effect is to
shift the response probability down by 0.1 for group 1, i.e.,
Tth(i)1 = (o — 0.1. The resulting values of the response

probabilities in the twelve simulation conditions are sum-
marised in Table 1.

For each of the conditions, we generate 250 random sam-
ples. The data analysis is carried out in Mplus (Muthén &
Muthén, 2017) and R (R Core Team, 2024), using the pack-
age MplusAutomation (Hallquist & Wiley, 2018).

4.2. Results

Tables 2 and 3 show the simulation results, in the form of
the average bias, root mean squared error (RMSE) and
median absolute error (MAE) of estimates over the 250 sim-
ulations in each of the simulation scenarios. As noted above,
the parameters considered here are the two coefficients of
G; in the model for the lower-level class Xj;, both with the
true value of 0.5. We consider their estimates together, so
that we have 500 estimated values for each simulation
setting.

Consider first estimation where measurement non-
equivalence is ignored, ie., when both two-step and one-
step estimates are calculated under the assumption of full
equivalence of measurement. These results are shown in
Table 2. When the true model has no MNE, there is little
difference between the two estimators and both are essen-
tially unbiased. Both of them become increasingly seriously
biased when the true measurement model involves increas-
ing levels of MNE. This bias is also larger when class separ-
ation is weaker, i.e., when the measurement model is weak.
Here there are also noticeable differences between the two

Table 1. Values of the item response probabilities in different conditions con-
sidered in the simulations.

Patterns of response probabilities:

Response probability
Mg = P(Ya = 1IX =16 =g)

for item (h)
Class (t) Group (g) 1 2 3 4 5 6
1 0 Hoa Hoa Hob Hob H H
1 Hia Hia Hip Hip H H
2 0 Hoa Hoa Hob L L L
1 Hia Hig Hup L L L
3 0 L L L L L L
1 L L L L L L

Values of the probabilities in different simulation conditions:

Separation Separation Measurement

Condition (low my(pg) (high Thg)  non-equiv.  (Hoa, Hia) (Hop, Hie) H L
1 Weak Weak None 0.8 0.8 0.8 0.5
2 Weak Strong None 0.9 09 09 05
3 Strong Weak None 0.8 0.8 0.8 0.2
4 Strong Strong None 0.9 0.9 09 0.1
5 Weak Weak Weak (0.8, 0.7) 0.8 0.8 0.5
6 Weak Strong Weak (0.9, 0.8) 09 0905
7 Strong Weak Weak (0.8, 0.7) 0.8 0.8 0.2
8 Strong Strong Weak (0.9, 0.8) 09 09 01
9 Weak Weak Strong (0.8,0.7) (0.8,0.7) 0.8 0.5
10 Weak Strong Strong (0.9, 0.8) (0.9,0.8) 0.9 0.5
11 Strong Weak Strong (0.8, 0.7) (0.8,0.7) 0.8 0.2
12 Strong Strong Strong (0.9,0.8) (0.9,08) 0.9 0.1

In the lower table, two values for (Hoq, H1q) and/or (Hop, Hip) indicate that
the values of these probabilities are different in groups g =0,1, i.e, that
there is measurement non-equivalence in the corresponding part of the
model.



Table 2. Estimation assuming full equivalence of measurement.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 683

Class separation for

True level of measurement non-equivalence

None Weak Strong
(low mtp(1)9) (high mtp(1)9) One-step Two-step One-step Two-step One-step Two-step
Mean bias:
Weak Weak 0.001 —0.012 0.263 0.055 0.743 0.256
Weak Strong 0.003 —0.002 0.031 0.073 0.153 0.258
Strong Weak —0.003 —0.003 0.028 0.027 0.128 0.126
Strong Strong 0.000 —0.001 0.009 0.008 0.058 0.057
Root mean squared error:
Weak Weak 0.125 0.121 1.238 0.412 1.888 0.741
Weak Strong 0.088 0.086 0312 0.267 0.520 0.480
Strong Weak 0.067 0.067 0.137 0.135 0.225 0.218
Strong Strong 0.058 0.058 0.079 0.079 0.118 0.116
Median absolute error:
Weak Weak 0.084 0.080 0.533 0.361 0.930 0.683
Weak Strong 0.055 0.057 0.288 0.244 0.514 0.438
Strong Weak 0.048 0.048 0.116 0.114 0.181 0.168
Strong Strong 0.036 0.036 0.059 0.059 0.090 0.089

Mean bias, root mean squared error (RMSE) and median absolute error (MAE) of two-step and one-step estimates of the structural parameters. The results are
across the 2 x 250 estimates of two coefficients of the covariate G (both with true value of 0.5) in the model for lower-level latent class X, over 250 simulation

replications in each of the twelve simulation conditions in Table 1.

Table 3. Estimation under correctly specified model for measurement non-
equivalence (MNE).

Class separation for Level of measurement non-equivalence

Weak Strong
(low mppg)  (high mpg)  One-step  Two-step  One-step  Two-step
Mean bias:
Weak Weak 0.002 —-0.021 —0.066 —-0.118
Weak Strong 0.003 —0.011 —0.008 —0.101
Strong Weak —0.003 —0.006 —0.002 —0.056
Strong Strong —0.001 —0.001 0.004 —0.007
Root mean squared error:
Weak Weak 0.159 0.127 0.560 0.187
Weak Strong 0.098 0.086 0.222 0.134
Strong Weak 0.072 0.066 0.103 0.087
Strong Strong 0.059 0.058 0.060 0.054
Median absolute error:
Weak Weak 0.101 0.086 0.287 0.124
Weak Strong 0.069 0.059 0.139 0.109
Strong Weak 0.049 0.045 0.067 0.064
Strong Strong 0.037 0.035 0.041 0.035

Mean bias, root mean squared error (RMSE) and median absolute error (MAE)
of two-step and one-step estimates of the structural parameters. The results
are across the 2 x 250 estimates of two coefficients of the covariate G (both
with true value of 0.5) in the structural model for lower-level latent class X,
over 250 simulation replications in each of the eight simulation conditions in
table 1 that involve MNE.

estimators, in that the two-step estimates have mostly
smaller bias and smaller RMSE than the one-step estimates,
especially in the more difficult low-separation settings. The
same is true for MAEs, showing that the poorer perform-
ance of the one-step estimates is fairly general and not just
due to a small number of extreme values of the estimates.
Table 3 shows the results in the eight simulation condi-
tions where MNE is present, when the estimators are based
on a correct specification for the MNE. Both estimators
again perform better when the separation between the latent
classes is stronger. This is as expected, and consistent with
previous results for estimation in situations with no MNE
(e.g., Bakk & Kuha, 2018; Vermunt, 2010). Here the most
challenging conditions are the ones where low item response
probabilities (i.e., the ones indicated by L’ in Table 1) are
0.5, so that they are not very clearly distinguished from the

higher response probabilities. The estimators perform rea-
sonably well, and in most cases essentially similarly.
However, some differences between them emerge when class
separation is weak and there is a large amount of MNE.
Here the two-step estimates have a little more bias, but
clearly lower RMSE and MAE than the one-step estimates.
In these most difficult situations a large proportion of the
one-step estimates are thus quite far from the true parame-
ters, whereas two-step estimation substantially reduce these
extremes.

5. Empirical Example

We illustrate the proposed two-step method of estimation
for multilevel LC models with non-equivalence of measure-
ment with an analysis of cross-national data on citizenship
norms among adolescents. The data come from the
International Civic and Citizenship Education Study 2016
(Schulz et al, 2018), which was conducted by the
International Association for the Evaluation of Educational
Achievement, and are accessed via the R package
multilevLCA (Lyrvall et al, 2023). These data have been
used in previous substantive studies of citizenship norms
(Hooghe et al., 2016; Hooghe & Oser, 2015; Oser et al,
2023; Oser & Hooghe, 2013). For details on data cleaning
and recoding, see [reference with DOI to be added].

The survey asked 14-year-old adolescents to state their
level of agreement on whether a set of activities are impor-
tant for a person to be considered a good adult citizen. We
include responses to five such questions, related to activities
that correspond to engaged citizenship: participation in local
activities (we label this item local), engagement in political
conversations (discuss), show of support for environmental
protection activities (envir), promotion of human rights
(rights), and participation in peaceful protests (protest). The
responses are coded in a binary form, as 1 if the respondent
regarded the activity as very or quite important for being a



684 LYRVALL, KUHA, OSER

good adult citizen, and 0 if they thought it not very or not
at all important.

These five binary variables are the measurement items
(Yjp in the notation above). Individual-level latent classes
(Xjj) measured by them will characterise different profiles of
what an adolescent considers important in a good citizen.
We have hierarchical data where individual children (lower-
level units j) are nested within countries (higher-level units
i). We consider structural models where the proportions of
X;; may vary by two country characteristics (non-constant
covariates in Z; = Z;), the country’s wealth and its civic
freedom, specifically press freedom. We do not include
covariates for the higher-level latent classes W;, so Z!' in
the notation of Section 2 includes only a constant. Wealth is
measured by logarithm of gross domestic product in U.S.
dollars (covariate InGDPusd), and a covariate on press free-
dom is based on the 2016 World Press Freedom Index
(PFI) by Reporters Without Borders. Civic freedom has pre-
viously not been considered as an explanatory variable in
the latent class analysis citizenship norms literature. For
clarity of this illustrative example, we consider data from
two groups of countries which have very different levels of
press freedom. Five of the countries are among those with
the highest levels of PFI—Finland (ranked 1st), Netherlands
(2), Norway (3), Denmark (4), and Sweden (8)—and three
among the lowest—Colombia (134), Russia (148), and
Mexico (149). We define a dummy variable (lowPFI) which
is 1 for the countries in the low-PFI group and 0 for the
high-PFI group." The sample sizes range from 2,728
(Netherlands) to 7,138 (Russia), with a total combined sam-
ple of 40,837 respondents.

We also allow for the possibility of MNE in some of the
items, with respect to lowPFI. The two groups of countries
defined by it have very different constraints on political
expression, and the different activities mentioned in the sur-
vey items may have different relative salience for adoles-
cents’ perceptions on what it takes to be a good citizen. In
particular, we speculate that this may be the case for sup-
port for environmental protection, promotion of human
rights, and participation in peaceful protests, which are
more public and/or politically contentious activities. We
therefore consider the possibility of MNE in these items.
The citizenship norms literature has not previously analyzed
civic freedom as a potential confounding variable in the
identification of latent classes.

We first identified the optimal number of latent classes.
This was based on the Bayesian information criterion (BIC)
combined with considerations of substantive clarity of the
estimated LC structure. A general recommendation is to

'An alternative analytical approach would be to use the original continuous
PFI score, which is ranging from 0 to 100. In this empirical example, we focus
on the binary low -high classification for ease of interpretation. Because the
variation in PFl score between the five countries is substantially larger
between these two groups than within these groups, we expect this choice of
analytical approach has little qualitative impact on the results (among the
low-PFl countries, the PFl scores are 55.89, 50.97, and 50.67 for Colombia,
Russia, and Mexico, respectively; among the high-PFl countries, they are
91.41, 91.24, 91.21, 91.11, and 87.67 for Finland, Netherlands, Norway,
Denmark, and Sweden, respectively).

perform this first step of model selection without covariates
and under the assumption of equivalence of measurement
(Masyn, 2017). We first estimated single-level models with
one to five latent classes, and concluded that the four-class
specification was preferred. We then estimated two-level LC
models, with individual countries as the higher-level units,
still with equivalence of measurement and without covari-
ates. With four lower-level classes, the best BIC value was
obtained for a model with three higher-level classes. This
multilevel model is preferred to the four-class single-level
model, indicating that allowing for the hierarchical cluster-
ing structure is desirable. We select the two-level model
with four high-level and three low-level classes for the rest
of the modeling.

In the second step of model selection, we add MNE with
respect to lowPFI to this multilevel model. We consider it
for all combinations of the three items envir, rights, and pro-
test, both when allowing MNE to vary across classes and
when restricting MNE to be invariant (on the logit scale)
across classes (i.e., constraining the coefficient of lowPFI in
Opr|s = Opy in Equation (5) not to depend on latent class ¢).
Here lowPFI, i.e., the covariate in Z, is included also in the
model for the latent class variable Xj;. The best BIC value is
obtained for a model which includes class-invariant MNE in
two items, envir and protest. In particular, it is preferred to
a model with full equivalence of measurement. This indi-
cates that MNE is present in the data.

Estimates of the measurement model parameters 6; for
the selected model from this step are also the step-1 esti-
mates of these parameters for two-step estimation, as dis-
cussed in Section 3. The item response probabilities implied
by this model are shown in Table 4. The first class places
importance on all five items. The second class emphasizes
the items related to specific topics (local, envir, rights), but
not as much or at all the ones related to method of engage-
ment (discuss, protest). Individuals belonging to the third
class have middling probabilities of endorsing each of the
items, and those in the fourth class do not place importance
on any of them as criteria for a good adult citizen. We label
class 1 Maximal, class 2 Topic, class 3 Medium, and class 4
Unengaged. The same interpretation of the classes would

Table 4. Item response probabilities for the four lower-level (individual-level)
classes, describing different profiles of engaged citizenship norms.

Model with full
Selected model measurement equivalence

a1 ¢d2 d3 d4 d1 d2 c3 .4

Item Maximal Topic Medium Uneng. Maximal Topic Medium Uneng.

local 0.981 0961 0.600 0.096 0.980 0.961 0.660  0.113

discuss 0.953  0.000 0.294 0.074 0.981  0.001 0.298  0.091

rights 0.988 0988 0.668 0.000 0.985 0.981 0.730  0.032

envir 0.984  1.000 0.772  0.210
lowPFl =0 0977  0.998 0.693 0.166
lowPFl =1 0.987  0.999 0.796  0.255

protest 0.879  0.668 0.360  0.065
lowPFl =0 0.831  0.562 0.330  0.035
lowPFl =1 0.885  0.666 0.434  0.054

The probabilities are shown for a model where the measurement models of
items envir and protest are non-equivalent with respect to the binary covariate
lowPFI (countries with high vs. low levels of press freedom), and for a model
where all the measurement probabilities are equivalent across countries.



Table 5. Estimated proportions of the three higher-level (country-level) latent
classes, and of the four lower-level (individual-level) latent classes within the
higher-level classes.

Model with full

Selected model measurement equivalence

Higher-level class (proportion) Higher-level class (proportion)
Lower-level class 1 (0.500) 2 (0.375) 3 (0.125) 1 (0.500) 2 (0.375) 3 (0.125)

Maximal 0.467 0.290 0.236 0.428 0.189 0.289
Topic 0.251 0.190 0.543 0.233 0.151 0.549
Medium 0.226 0.408 0.185 0.273 0.493 0.141
Unengaged 0.055 0.112 0.036 0.066 0.167 0.021

The probabilities are shown for the selected model where the measurement
models of items envir and protest are non-equivalent with respect to the bin-
ary covariate lowPFl (and averaging over the sample distribution of this vari-
able) and for a model where all the measurement probabilities are equivalent
across countries.

Table 6. Estimated coefficients of the covariates lowPF/ (dummy variable for
countries that have low press freedom Index) and InGDPusd (country’s log
GDP in US dollars) in a multilevel model for individual-level latent classes.

Coefficient (in model vs. class Unengaged)

Model with full

Selected model measurement equivalence

Covariate  Maximal Topic ~ Medium  Maximal Topic Medium
lowPFI 0.963**F*  1,657*** 0423 1.125%%%  1,987%**  (0,619%**
InGDPusd  0.561***  —0.371**  0.184 0.516* —0.440*  0.059
*p < 0.05,

*p < 0.01,

*¥p < 0.0001.

These estimates are from the second step of two-step estimation. The meas-
urement model for the items given the latent classes is fixed at the estimated
parameters of the selected model which allows for measurement non-equiva-
lence in two items (on the left) or of a model where all the measurement
probabilities are equivalent across countries (on the right). The fixed measure-
ment probabilities of these two choices are as shown in Table 4.

also be obtained from a model which constrains the meas-
urement models to be fully equivalent, item probabilities
from which are also shown in Table 4 for comparison. The
implications for allowing for MNE are seen in the probabil-
ities for items envir and protest in the selected model. Here
in all classes the probabilities of endorsing these items are
higher in countries with low press freedom. In other words,
adolescents in countries with low levels of press freedom are
more uniformly likely to regard support for environmental
protection and participation in peaceful protests as charac-
teristics of a good adult citizen than are adolescents in
countries with more press freedom.

Table 5 shows the estimated proportions of the latent
classes after this first step, again for the selected model and
for the full equivalence model for comparison. For the
selected model, these probabilities are averaged over the
sample proportions of the two values of lowPFI. In broad
terms, the most noticeable difference between the higher-
level classes is that one of them (class 2 in the table) has
substantially higher probabilities than the other two classes
of individuals belonging to the two lower-level classes (class
Medium and Unengaged) which place least importance on
these items as indicators of good citizenship. Averaged over
the probabilities of the higher-level classes, the estimated
proportions of individuals in the lower-level classes in the

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 685

selected model are 0.37, 0.26, 0.29 and 0.07 for the
Maximal, Topic, Medium and Unengaged classes
respectively.

Finally, we estimate the structural model for the individ-
ual-level latent class given the covariates lowPFI and
InGDPusd. The estimated coefficients of this multinomial
logistic model are reported in Table 6, again showing results
based on the selected measurement model with MNE and,
for comparison, a model with full measurement equivalence.
Table 6 shows two-step estimates of the parameters of the
structural model, estimated as described in Section 3, and
with the measurement parameters fixed at their estimated
values from Table 4. The reference category for a respond-
ent is here the class Unengaged. Considering the estimates
from the selected model, the results show that adolescents
living in countries with less press freedom are increasingly
more likely to have norms that emphasize more activities,
relative to having “unengaged” norms, even after controlling
for GDP. The coefficients of InGDPusd indicate that individ-
uals in higher-GDP countries are most likely to belong to
the class Maximal which regards all the activities as impor-
tant for good citizenship, but less likely to belong to the
class Topic which de-emphasises the role of discussion only
and (to a lesser extent) participation in peaceful protests.
These differences between the more engaged classes
(Maximal and Topic) and the less engaged classes (Medium
and Unengaged) are substantively large and statistically sig-
nificant (by conventional criteria) with respect to both cova-
riates. In contrast, neither covariate makes a significant
difference on the distinction between the two less engaged
classes.

Comparing the estimates under the two specifications
on measurement, we can see, in particular, that the coeffi-
cients of lowPFI are consistently less strong when we
allow for measurement non-equivalence. This happens
because some of the association between lowPFI and the
responses is accounted for by measurement differences,
that is, by the fact that the specific activities that have
MNE are overall relatively more salient for adolescents in
countries with low press freedom. where lowPFI is 1.
Even after accounting for this, however, it is clear that
adolescents in countries with low levels of press freedom
are substantially more likely to be of the view that good
citizenship is something that encompasses a larger number
of activities.

6. Concluding Remarks

We proposed a two-step estimation approach for multilevel
latent class models with covariates in the presence of meas-
urement non-equivalence. The method involves estimating
the measurement model in the first step, and then holding
its parameters fixed at their estimated values in the second
step where the structural model for the classes given covari-
ates is estimated. The key modification that is needed here,
compared to two-step estimation of models with full meas-
urement equivalence, is that covariates which create non-
equivalence of measurement need to be included already in
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the first step. Their direct effects on measurement indicators
are estimated there, while their coefficients (and those of
any other covariates) in the structural model are estimated
in the second step.

From a simulation study we observed that the proposed
estimator performs generally well when the model is cor-
rectly specified, and essentially as well as the one-step max-
imum likelihood estimator which estimates all parameters at
once. The performance of both estimators deteriorates to
some extent in settings where the measurement model is
weak and there is strong non-equivalence of measurement.
The simulations also gave some evidence that two-step esti-
mates are more robust to model misspecification which
occurs when the measurement is incorrectly taken to be
equivalent.

We have argued that two-step estimation has in principle
two kinds of advantages over one-step estimation, the com-
putational and the conceptual. The conceptual one is that
estimating and fixing the measurement model before we
proceed to estimate structural models for the latent classes
means that the definition of the classes is then also fixed,
and will not change even if we estimate and compare mul-
tiple different structural models. This advantage holds
unchanged even when the models involve measurement
non-equivalence. The computational advantage of two-step
estimation, on the other hand, is somewhat reduced here.
This is because the first step now includes also those covari-
ates that are needed to account for the non-equivalence,
making this step too more complex in comparison to when
there is an absence of non-equivalence. It remains the case,
however, that thereafter estimation is less demanding than it
would be in one-step estimation. This is because in the two-
step approach it will involve only the structural parameters,
whereas the measurement parameters are fixed rather than
repeatedly re-estimated.

As always, some questions on the properties and proce-
dures of these methods are left open. We mention in par-
ticular questions of model selection. For multilevel latent
class models with measurement non-equivalence this
involves multiple dimensions: choosing the number of
latent classes at the lower and higher levels, as well as
determining which covariates are involved in non-equiva-
lence and in what ways. Decisions on these dimensions
could affect each other. In this paper we did not examine
this question but employed a particular approach in line
with previous literature. However, more systematic under-
standing of different approaches that could be used here
would still be desirable.
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