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Two-Step Multilevel Latent Class Analysis in the Presence of Measurement 
Non-Equivalence
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aUniversity of Catania; bLondon School of Economics and Political Science; cBen-Gurion University of the Negev 

ABSTRACT 
We consider estimation of two-level latent class models for clustered data, when the measurement 
model for the observed measurement items includes non-equivalence of measurement with respect to 
some observed covariates. The parameters of interest are coefficients in structural models for the 
latent classes given covariates. We propose a two-step method of estimation. This extends previously 
proposed methods of two-step estimation for models without non-equivalence of measurement by 
specifying the model used in the first step in such a way that it correctly accounts for non-equiva
lence. The properties of these two-step estimators are examined using simulation studies and an 
applied example.
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1. Introduction

The methodological research question that is considered in 
this article is the following: How can we estimate multilevel 
latent class models with covariates when there is non- 
equivalence of measurement in some of the measurement 
items, using the two-step method of estimation? How well 
do these estimates perform? We begin by briefly introducing 
the key terms in this statement.

Latent class (LC) analysis (Goodman, 1974; Lazarsfeld & 
Henry, 2004) is used to classify units into subgroups based 
on multiple observed categorical variables. The LC model 
takes these observed variables (items) to be indicators of a 
categorical latent variable of interest (latent class). For 
example, Oser et al. (2023) used LC analysis to identify 
types of citizenship norms measured by responses to mul
tiple survey questions about different democratic values.

In applied LC analysis, substantive research questions 
commonly focus on associations between external predic
tors, or covariates, and the probabilities of belonging to the 
different latent classes. This is operationalised in terms of 
regression models for the classes given the covariates. For 
example, Oser et al. (2023) used socioeconomic predictors 
to describe how individuals sort into citizenship norms. The 
model then combines two elements: a measurement model 
for how the items measure the latent classes, and a struc
tural model for how the latent classes depend on the 
covariates.

Basic LC modelling assumes that the units of analysis are 
independent of each other. This is insufficient when we 
have hierarchical data where lower-level units (such as indi
vidual respondents) are nested (clustered) within higher-level 

units (groups). The nesting can extend to still higher levels, 
but our discussion is limited to the case of two-level hier
archical data. It is assumed that units in different groups are 
independent of each other, but that lower-level units within 
the same group need not be independent even conditional 
on the covariates.

Within-group dependencies can be accommodated by 
introducing another latent variable which varies at the 
higher level. When it is categorical, i.e., a higher-level latent 
class variable, we have a multilevel latent class model 
(Vermunt, 2003). For example, Di Mari et al. (2023) used 
multilevel LC analysis to identify citizenship norms within 
countries, finding two country-level clusters with different 
prevalences of the individual-level classes of citizenship 
norms. The higher-level variable is analogous to continuous 
random effects in multilevel models which include such vari
ables (see e.g., Rabe-Hesketh & Skrondal 2022 for examples 
of them). Multilevel LC models can include covariates as 
predictors of both higher- and lower-level latent classes. 
Most often substantive interest is focused on the lower level. 
For instance, Di Mari et al. (2023) identified socioeconomic 
predictors of individual-level norms.

We consider likelihood-based estimation of the models. 
In standard maximum likelihood (ML) estimation, or one- 
step estimation, all the parameters are estimated simultan
eously. In contrast, stepwise estimation divides estimation of 
the measurement model and the structural model into sep
arate steps. The one-step approach has the standard opti
mality properties of ML estimation, but it also has serious 
drawbacks (see the discussions in Vermunt, 2010 and Bakk 
& Kuha, 2018). Practically, it can be computationally 
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demanding and will require the same computational effort 
every time the model is changed and re-fitted. Conceptually, 
estimating the measurement and structural models together 
has the disadvantage that they will affect each other. Any 
changes to the structural model, such as adding or removing 
covariates or changing their functional form, will also 
change the estimated measurement model, and hence the 
implied definition of the latent classes. These changes can 
be so large that they render comparisons of different struc
tural models effectively meaningless.

Stepwise estimation avoids or reduces the disadvantages 
of the one-step method. It begins by estimating just the 
parameters of the measurement model (step 1). Different 
stepwise methods differ in what happens next. Three-step 
estimation assigns observations to the latent classes based on 
the estimated measurement model (step 2), and then fits the 
structural model for these assigned classes (step 3). Bias- 
adjusted three-step estimation employs further adjustments 
to correct for misclassication bias that would arise from 
naive use of step 2 (see the review in Bakk & Kuha, 2021
and references therein).

In contrast, stepwise two-step estimation does not assign 
predicted latent classes, but estimates (in its step 2) the 
structural model directly from a likelihood where the meas
urement-model parameters are fixed at their estimates from 
step 1. Two-step estimation for LC models was first pro
posed by Bandeen-Roche et al. (1997) and Xue and 
Bandeen-Roche (2002), and further developed by Bakk and 
Kuha (2018). The same idea can also be applied to latent 
variable models which have continuous rather than categor
ical latent variables (Kuha & Bakk 2023; Rosseel & Loh, 
2024).

For multilevel LC models, stepwise methods have been 
proposed using a bias-adjusted three-step (Lyrvall et al., 
2024), an intermediate “two-stage” (Bakk et al., 2022), and 
the two-step approaches (Di Mari et al., 2023). We regard 
the two-step method as the preferred approach because of 
its simplicity and good performance in previous studies.

A latent variable model has the property of measurement 
equivalence if the measurement model for the items depends 
only on the latent variables but not on any covariates or 
observed response variables. Violation of this, where meas
urement is affected also by observed external variables, is 
known as measurement non-equivalence, also known as non- 
invariance of measurement or differential item functioning 
(DIF). It can arise, for example, in cross-national surveys 
from differences in translation or in educational testing 
from differences in familiarity of test questions for different 
groups of students which are unrelated to their ability. In 
the illustrative example that we consider in Section 5 of this 
paper, we allow for possible non-equivalence in survey ques
tions on citizenship norms which may arise from differences 
in the salience of different civic activities in countries with 
higher or lower levels of political freedom. There is a large 
literature on issues of non-equivalence in different applica
tions and for different types of latent variable models (see 
e.g., Millsap 2011 and Kankara�s et al. 2011, and references 

therein). Masyn (2017) discusses it for LC models, and pro
vides definitions and model specifications.

If there is non-equivalence in the measurement, estima
tion which ignores this will yield biased estimates also for 
the structual model. Studies by Asparouhov and Muth�en 
(2014), Janssen et al. (2019) and Di Mari and Bakk (2018) 
show that this bias can be large for latent class models. It is 
thus often crucial to correctly account for any non-equiva
lence in model specification and estimation.

One-step estimation in this situation is still standard ML 
estimation, now for a model which includes covariates also 
in the measurement model. For stepwise methods, Vermunt 
and Magidson (2021) described how bias-adjusted three-step 
estimation can be implemented for single-level LC models 
with non-equivalence of measurement. Their key point is to 
specify the model for its step 1 correctly. This should 
include those covariates which affect the measurement 
model, and include them in both the measurement model 
and the structural model (they should then also be appro
priately accounted for in steps 2 and 3).

Vermunt and Magidson (2021) also note that what they 
propose for three-step estimation would also be the correct 
form for step 1 of the two-step method. In this paper we 
follow up on that point. We combine the elements from 
previous literature described above, and extend them to 
develop two-step estimation which allows for non-equiva
lence of measurement and which can be applied to single- 
level and multilevel LC models.

The model is defined in Section 2 of the paper, and in 
Section 3 we describe how the estimation is implemented. 
We then evaluate the performance of the method through 
simulation studies in 4 and illustrate it further with an 
empirical example in Section 5.

2. Multilevel Latent Class Model with Covariates 
and Measurement Non-Equivalence

Here we give a formal definition of the model that was out
lined in Section 1. We define its elements in steps, finishing 
with the introduction of non-equivalence to the measure
ment model.

Consider hierarchical data where lower-level units (indi
viduals) j ¼ 1, . . . , ni are nested in higher-level units 
(groups) i ¼ 1, . . . , I: Let Yijh; h ¼ 1, . . . , H; be the values 
of H observed variables (items) for lower-level unit j in 
higher-level unit i, and define Yij ¼ ðYij1, . . . , YijHÞ

0
: Here 

each Yijh is a categorical variable, with possible values r ¼
1, . . . , Rh: Let Zij ¼ ðZH0

i , ZL0
ij Þ
0 be a vector of observed cova

riates, where the variables in ZL
ij (lower-level covariates) can 

vary between different lower-level units within the same 
higher-level unit but ZH

i (higher-level covariates) vary only 
between the higher-level units. We take ZH

i to include a 
constant 1, thus introducing an intercept term to all the 
regression models described below.

The items Yij are regarded as observed indicators of a 
discrete latent variable Xij with categories (latent classes) t ¼
1, . . . , T: The standard latent class (LC) model specifies the 
joint probability function of Xij and Yij as PðYij, XijÞ ¼
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PðXijÞPðYijjXijÞ: This has two basic elements, the structural 
model PðXijÞ for the probabilities of the latent classes, and 
the measurement model PðYijjXijÞ for how the items meas
ure the latent classes. We make throughout the assumption, 
which is standard in LC analysis, that Yijh for different h are 
conditionally independent of each other given the latent 
class. The measurement model can then be written as

PðYijjXijÞ ¼
YH

h¼1
PðYijhjXijÞ: (1) 

Next, the model is extended to accommodate the hierarch
ical structure of the data. This is done by expanding the 
structural model to PðXij, WiÞ ¼ PðWiÞPðXijjWiÞ; where Wi 
is another categorical latent class variable, with categories 
m ¼ 1, . . . , M: It varies only between higher-level units i, so 
we refer to it as the higher-level LC variable and Xij as the 
lower-level LC variable. It is assumed that Yij and Wi are 
conditionally independent given Xij; and that Xij for the same 
i are conditionally independent given Wi: Averaged over 
PðWiÞ; however, values of Xij for different j within the same 
group i will be associated because they share the same Wi: In 
this sense, Wi is a categorical analogy of continuous random 
effects in multilevel (random effects) models, and the model 
is referred to as a multilevel (here two-level) LC model.

We then introduce covariates to the structural model, as

PðXij, WijZijÞ ¼ PðWijZH
i ÞPðXijjWi, ZijÞ, (2) 

noting that higher-level classes Wi can only depend on 
higher-level covariates ZH

i but lower-level classes Xij can 
depend on both lower- and higher-level covariates. We spe
cify these models as the multinomial logistic models

PðWi ¼ mjZH
i Þ ¼

exp ða0mZH
i Þ

PM
l¼1 exp ða0lZ

H
i Þ

and (3) 

PðXij ¼ tjWi ¼ m, ZijÞ ¼
exp ðc0tjmZijÞ

PT
s¼1 exp ðc0sjmZijÞ

, (4) 

where am and ctjm for m ¼ 1, . . . , M and t ¼ 1, . . . , T are 
parameter vectors, and a1 ¼ 0 and c1jm ¼ 0 for all m for 
identifiability. The specification may include constraints on 
the parameters, for example when some of them are 0 or 
when matching elements of ctjm are equal for all m. Often 
the focus of substantive interest is on model (4) for the 
lower-level latent class Xij; and the higher-level class Wi is 
regarded just as a random effect to allow for within-group 
associations between Xij: In that case, model (3) will often 
include just the intercept terms am ¼ am:

The model defined by (1) and (2) is a standard multilevel 
LC model with covariates (Bakk et al., 2022; Di Mari et al., 
2023; Lyrvall et al., 2024; Vermunt, 2003). A key feature of it 
is that the measurement model (1) does not depend on Zij:

This can be relaxed by introducing covariates also to this, as

PðYijjXij, ZijÞ ¼
YH

h¼1
PðYijhjXij, Z�ijhÞ

where the models for the individual items are multinomial 
logistic models

PðYijh ¼ rjXij ¼ t, Z�ijhÞ ¼
exp ðd0hrjtZ

�
ijhÞ

PRh

q¼1
exp ðd0hqjtZ

�
ijhÞ

(5) 

for r ¼ 1, . . . , Rh; and dhqjt are parameter vectors with 
dh1jt ¼ 0 for all h, t. This kind of measurement model for 
item Yh is non-equivalent with respect to the covariates in 
Z�ijh: We write this with the subscript h to denote only those 
elements of Z which do affect the measurement model for 
the hth item. This is useful for clarity, because it is very 
common that these include only a subset of the variables in 
Z; and that they are different for different items. There may 
be parameter constraints, for example so that the coeffi
cients of Z�ijh (except for the intercept) do not depend on 
latent class t, or that even for the same h they may be non- 
zero for some latent classes but zero for others. If Z�ijh 
includes only the constant 1, measurement of item Yijh is 
equivalent with respect to all of the covariates.

Let Yi ¼ ðY0i1, . . . , Y0ini
Þ
0 and Zi ¼ ðZ0i1, . . . , Z0ini

Þ
0 denote all 

the observed values of the items and the covariates for higher- 
level unit i. The model for these observed data is obtained by 
averaging over the distributions of the latent Wi and Xij; as

PðYijZi; hÞ

¼
XM

m¼1
PðWj ¼ mjZH

i ; h2Þ �
Yni

j¼1

XT

t¼1
PðXij ¼ tjWj

(0

@

¼ m, Zij; h2Þ
YH

h¼1
PðYijhjXij ¼ t, Z�ijh; h1Þ

" #)!

where we have also introduced parameters h ¼ ðh01, h02Þ
0 into 

the notation. Here h1 denotes all the parameters of the 
measurement model, i.e., the d s in (5), and h1 all the 
parameters of the structural model, i.e., the a s and c s in 
(3) and (4).

Model (6) is a multilevel (here two-level) latent class 
model with covariates and with non-equivalence of meas
urement. What we examine in this paper is two-step meth
ods of estimating the parameters of this model, with focus 
on the structural parameters h2: In the general presentation 
of the method in Section 3 we take the choice of 
Z�ij1, . . . , Z�ijH as given, i.e., we assume that it has already 
been determined which covariates are needed to allow for 
non-equivalence of measurement in different items. Model 
selection procedures for deciding on this are described by 
Masyn (2017) and Vermunt and Magidson (2021); an illus
tration of them is included in our applied example in 
Section 5. We also assume that the specification of the 
measurement model is such that the parameters of the 
structural model are formally and practically identified. This 
requires, in essence, that the non-equivalence should not be 
too extensive, at a minimum that it does not affect all of the 
items in Yij:

3. Two-Step Estimation of the Model Parameters

The Yi for different higher-level units i are taken to be con
ditionally independent given Zi: The log-likelihood function 
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for the model that was defined in Section 2 can then be 
written as lðhÞ ¼ lðh1, h2Þ ¼

PI
i¼1 log PðYijZi; hÞ; where 

PðYijZi; hÞ is given by (2) combined with (3)–(5).
One-step maximum likelihood (ML) estimates of the 

parameters are obtained by maximizing lðhÞ with respect to 
all of h at once. In contrast, two-step estimation divides the 
estimation into two steps. In its step 1, an estimate ~h1 of 
the measurement parameters is obtained. In step 2, esti
mates ~h2 of the structural parameters are obtained by 
maximizing lð~h1, h2Þ with respect to h2; i.e., using the same 
log-likelihood as for one-step estimation but treating now 
the measurement parameters h1 fixed at their estimated val
ues ~h1 from step 1.

This idea of two-step estimation has been examined for 
single-level latent class models by Bakk and Kuha (2018) 
and for multilevel LC models by Di Mari et al. (2023). 
What is new here is that we want to extend it to the case 
where the model includes non-equivalence of measurement. 
The key question is then how step 1 should be carried out. 
The general answer is that it should use the simplest model 
that allows valid estimation of h1: To present this, we write 
now Zij ¼ ðZ†0

ij , Z�0ij Þ
0
; where Z�ij denotes the union of Z�ijh 

over h, i.e., those covariates that appear in the measurement 
model for at least one item, and Z†

ij denotes those covariates 
that do not appear anywhere in the measurement model. 
Let pðZ†

ijjZ
�
ijÞ denote the conditional joint distribution of Z†

ij 
given Z�ij: The conditional distribution for the latent class 
variables and the items given Z�ij only is obtained by mar
ginalising over this, as

PðYij, Xij, WijZ�ij; h1, h�2Þ

¼
Ð

PðXij, WijZ†
ij, Z�ij; h2ÞpðZ†

ijjZ
�
ijÞdZ†

ij

h i
PðYijjXij, Z�ij; h1Þ

¼ PðXij, WijZ�ij; h
�
2ÞPðYijjXij, Z�ij; h1Þ

¼ PðWijZH�
i ; h�2ÞPðXijjWi, Z�ij; h

�
2ÞPðYijjXij, Z�ij; h1Þ:

(7) 

This is of the same multilevel LC form as the full model 
given Zij which led to (2). The two have different structural 
models, since (7) is conditional on Z�ij only (so we denote 
its structural parameters by h�2 rather than h2). Crucially, 
however, both have the same measurement model 
PðYijjXij, Z�ij; h1Þ; with the same h1: The measurement 
parameters h1 can thus be estimated from this, using an 
observed-data log likelihood that is obtained by marginalis
ing (7) over Xij and Wi; This is the key result that was 
derived by Vermunt and Magidson (2021) for step 1 of 
three-step estimation for single-level LC models, and it 
holds also for two-step estimation for the multilevel models 
that we consider here. Vermunt and Magidson (2021) also 
observed that the same result holds even if the model 
includes observed variables that are treated as distal out
comes rather than covariates, even when they depend on 
the items Yij; this is because they would be integrated out 
from an expression like (7). If the model has full measure
ment equivalence, i.e., Z�ij includes only the constant 1, (7) 
integrates out all the covariates. The step-1 model is then a 
multilevel LC model without covariates, as in Di Mari et al. 
(2023).

We note that this derivation involves one approximation. 
This is that if the structural models given Zij are multi
nomial logistic models as in (3) and (4), they will in general 
be only approximately of a multinomial logistic form given 
a smaller set Z�ij (unless this is empty or includes only a sin
gle categorical variable). We do not expect that this will 
have a meaningful impact on the quality of the step-1 esti
mates of h1 (we note also that the same inconsistency arises 
whenever any multinomial logistic models are fitted given 
different sets of covariates, even for observed response 
variables).

In summary, when there is non-equivalence of measure
ment with respect to covariates Z�ij; step 1 of two-step esti
mation should be for a model which includes these Z�ij in 
both the structural model and the measurement model. This 
is still simpler than one-step estimation if Z�ij is smaller than 
the full set of covariates Zij: Estimates ~h1 of the measure
ment parameters from this step 1 are carried forward to 
step 2 (and estimates of the structural parameters h�2 are dis
carded). Two-step estimates ~h2 of the structural parameters 
are then obtained from step 2 by maximizing lð~h1, h2Þ with 
respect to h2:

For estimation of standard errors of ~h2; two broad 
approaches are possible. One of them accounts for sampling 
uncertainty in ~h1 by including a term corresponding to this 
in the standard error calculation (Bakk and Kuha 2018; Di 
Mari et al. 2023). The other, simpler approach, omits this 
term, in effect taking the estimated measurement model 
from step 1 as an a priori fixed definition of the latent 
classes (see Kuha and Bakk 2023 for a discussion of these 
options). In our applied example in Section 5 we use this 
simpler approach to calculate the standard errors.

4. Simulation Study

4.1. Design

We use a simulation study to examine the performance of 
the proposed two-step method of estimation for multilevel 
latent class models with measurement non-equivalence 
(abbreviated MNE below). We focus on results for estimated 
parameters of the structural model for the lower-level classes 
(model (4) in Section 2), because this is typically the focus 
of substantive research questions in applications of multi
level LC models. Our primary question of interest is how 
well the estimates perform when MNE is correctly specified 
in the measurement model, and a secondary question is 
how much bias they have when MNE is incorrectly ignored 
and equivalence of measurement is assumed. For both of 
these questions, we also use one-step estimation as a 
comparator.

Two main factors are varied in the simulation settings: 
separation of the latent classes (i.e., the strength of the 
measurement model) and magnitude of the MNE. It is well 
known for models without MNE that estimates behave bet
ter when the classes are more clearly separated (Bakk & 
Kuha, 2018; Di Mari et al., 2023; Lyrvall et al., 2024; 
Vermunt, 2010), and we would expect the same to be the 
case here. Similarly, we expect that estimation is more 
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demanding if non-equivalence is more pronounced. A ques
tion of interest is then how large these differences may be.

Each simulated sample has I ¼ 100 higher-level units i 
and ni ¼ 100 lower-level units j in each i. Each higher-level 
unit belongs to one of two known groups, identified by an 
observed variable Gi ¼ 0, 1: The value of Gi is drawn at ran
dom for each i, with probability PðGi ¼ 1Þ ¼ 0:5: Non- 
equivalence of measurement may exist between these 
groups. This structure might correspond, for example, to a 
multicultural educational study where the higher-level units 
are schools, lower-level units are students, and the two 
groups are two different languages of instruction in the 
schools.

We consider models with T ¼ 3 lower-level latent classes 
(categories of Xij) and M ¼ 2 higher-level latent classes (cat
egories of Wi). Model (3) for Wi has no covariates, i.e., 
ZH

i ¼ 1; and we set PðWi ¼ 1Þ ¼ 0:6 and PðWi ¼ 2Þ ¼ 0:4:
Model (4) for Xij has Gi as its only covariate, i.e., Zij ¼

ð1, GiÞ
0
: The intercepts of this model are set so that, 

averaged over the distribution of Gi; we have 
PðXij ¼ 1jWi ¼ 1Þ ¼ PðXij ¼ 3jWi ¼ 2Þ ¼ 0:18; PðXij ¼ 2j
Wi ¼ 1Þ ¼ PðXij ¼ 2jWi ¼ 2Þ ¼ 0:31; and PðXij ¼ 3jWi ¼

1Þ ¼ PðXij ¼ 1jWi ¼ 2Þ ¼ 0:51:
In all of the simulations, in the model for Xij all coeffi

cients of Gi (i.e., in all ctjm in (4) for t ¼ 2, 3 and m ¼ 1, 2) 
are equal to 0.5. The estimated model correctly assumes that 
these coefficients do not vary by the higher-level class m, so 
that the model has two estimable coefficients of Gi: These 
are the parameters we focus on, considering all of their esti
mates together.

The lower-level latent class is measured by H ¼ 6 binary 
items Yijh for h ¼ 1, . . . , H; each with values 0 and 1. 
Consider the item response probabilities phðtÞg ¼ PðYijh ¼

1jXij ¼ t, Gi ¼ gÞ: Here for simplicity we write Gi in place 
of the covariates Z�ijh because in all cases where there is 
MNE we have Z�ijh ¼ ð1, GiÞ (and when there is no MNE, 
Z�ijh ¼ 1 and phðtÞ0 ¼ phðtÞ1). In all settings phðtÞg has a high 
value (> 0:5) for all items h ¼ 1 − 6 in the first lower-level 
class (t ¼ 1), for items 1–3 in class t ¼ 2 and for no items 
in class t ¼ 3; and low probabilities (� 0:5) otherwise. In 
different simulations we then allow MNE by group Gi for 
some of the phðtÞg : The strength of class separation and 
magnitude of MNE are determined by how these probabil
ities vary and how far they are from 0.5.

We consider simulation conditions with weaker and 
stronger lower-level class separation separately for low and 
high values of phðtÞg ; resulting in four settings for class sep
aration. These are combined with three conditions for 
MNE—none, weak and strong—resulting in 12 simulation 
conditions in total. When there is MNE, it affects the meas
urement models of some items in latent classes 1 and 2 but 
none of them in class 3. In the weaker MNE condition, 
classes 1 and 2 have MNE for items h ¼ 1, 2: In the stronger 
condition, class 1 has MNE in items 1–4 and class 3 in 
items 1–3. Thus MNE here affects only those probabilities 
phðtÞg that are greater than 0.5. In each case its effect is to 
shift the response probability down by 0.1 for group 1, i.e., 
phðtÞ1 ¼ phðtÞ0 − 0:1: The resulting values of the response 

probabilities in the twelve simulation conditions are sum
marised in Table 1.

For each of the conditions, we generate 250 random sam
ples. The data analysis is carried out in Mplus (Muth�en & 
Muth�en, 2017) and R (R Core Team, 2024), using the pack
age MplusAutomation (Hallquist & Wiley, 2018).

4.2. Results

Tables 2 and 3 show the simulation results, in the form of 
the average bias, root mean squared error (RMSE) and 
median absolute error (MAE) of estimates over the 250 sim
ulations in each of the simulation scenarios. As noted above, 
the parameters considered here are the two coefficients of 
Gi in the model for the lower-level class Xij; both with the 
true value of 0.5. We consider their estimates together, so 
that we have 500 estimated values for each simulation 
setting.

Consider first estimation where measurement non- 
equivalence is ignored, i.e., when both two-step and one- 
step estimates are calculated under the assumption of full 
equivalence of measurement. These results are shown in 
Table 2. When the true model has no MNE, there is little 
difference between the two estimators and both are essen
tially unbiased. Both of them become increasingly seriously 
biased when the true measurement model involves increas
ing levels of MNE. This bias is also larger when class separ
ation is weaker, i.e., when the measurement model is weak. 
Here there are also noticeable differences between the two 

Table 1. Values of the item response probabilities in different conditions con
sidered in the simulations.

Patterns of response probabilities:

Response probability

phðtÞg ¼ PðYh ¼ 1jX ¼ t, G ¼ gÞ

for item (h)

Class (t) Group (g) 1 2 3 4 5 6

1 0 H0a H0a H0b H0b H H
1 H1a H1a H1b H1b H H

2 0 H0a H0a H0b L L L
1 H1a H1a H1b L L L

3 0 L L L L L L
1 L L L L L L

Values of the probabilities in different simulation conditions:

Separation Separation Measurement

Condition (low phðtÞg) (high phðtÞg) non-equiv. (H0a , H1a) (H0b, H1b) H L

1 Weak Weak None 0.8 0.8 0.8 0.5
2 Weak Strong None 0.9 0.9 0.9 0.5
3 Strong Weak None 0.8 0.8 0.8 0.2
4 Strong Strong None 0.9 0.9 0.9 0.1
5 Weak Weak Weak (0.8, 0.7) 0.8 0.8 0.5
6 Weak Strong Weak (0.9, 0.8) 0.9 0.9 0.5
7 Strong Weak Weak (0.8, 0.7) 0.8 0.8 0.2
8 Strong Strong Weak (0.9, 0.8) 0.9 0.9 0.1
9 Weak Weak Strong (0.8, 0.7) (0.8, 0.7) 0.8 0.5
10 Weak Strong Strong (0.9, 0.8) (0.9, 0.8) 0.9 0.5
11 Strong Weak Strong (0.8, 0.7) (0.8, 0.7) 0.8 0.2
12 Strong Strong Strong (0.9, 0.8) (0.9, 0.8) 0.9 0.1

In the lower table, two values for ðH0a , H1aÞ and/or ðH0b, H1bÞ indicate that 
the values of these probabilities are different in groups g ¼ 0, 1; i.e., that 
there is measurement non-equivalence in the corresponding part of the 
model.
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estimators, in that the two-step estimates have mostly 
smaller bias and smaller RMSE than the one-step estimates, 
especially in the more difficult low-separation settings. The 
same is true for MAEs, showing that the poorer perform
ance of the one-step estimates is fairly general and not just 
due to a small number of extreme values of the estimates.

Table 3 shows the results in the eight simulation condi
tions where MNE is present, when the estimators are based 
on a correct specification for the MNE. Both estimators 
again perform better when the separation between the latent 
classes is stronger. This is as expected, and consistent with 
previous results for estimation in situations with no MNE 
(e.g., Bakk & Kuha, 2018; Vermunt, 2010). Here the most 
challenging conditions are the ones where low item response 
probabilities (i.e., the ones indicated by ‘L’ in Table 1) are 
0.5, so that they are not very clearly distinguished from the 

higher response probabilities. The estimators perform rea
sonably well, and in most cases essentially similarly. 
However, some differences between them emerge when class 
separation is weak and there is a large amount of MNE. 
Here the two-step estimates have a little more bias, but 
clearly lower RMSE and MAE than the one-step estimates. 
In these most difficult situations a large proportion of the 
one-step estimates are thus quite far from the true parame
ters, whereas two-step estimation substantially reduce these 
extremes.

5. Empirical Example

We illustrate the proposed two-step method of estimation 
for multilevel LC models with non-equivalence of measure
ment with an analysis of cross-national data on citizenship 
norms among adolescents. The data come from the 
International Civic and Citizenship Education Study 2016 
(Schulz et al., 2018), which was conducted by the 
International Association for the Evaluation of Educational 
Achievement, and are accessed via the R package 
multilevLCA (Lyrvall et al., 2023). These data have been 
used in previous substantive studies of citizenship norms 
(Hooghe et al., 2016; Hooghe & Oser, 2015; Oser et al., 
2023; Oser & Hooghe, 2013). For details on data cleaning 
and recoding, see [reference with DOI to be added].

The survey asked 14-year-old adolescents to state their 
level of agreement on whether a set of activities are impor
tant for a person to be considered a good adult citizen. We 
include responses to five such questions, related to activities 
that correspond to engaged citizenship: participation in local 
activities (we label this item local), engagement in political 
conversations (discuss), show of support for environmental 
protection activities (envir), promotion of human rights 
(rights), and participation in peaceful protests (protest). The 
responses are coded in a binary form, as 1 if the respondent 
regarded the activity as very or quite important for being a 

Table 2. Estimation assuming full equivalence of measurement.

Class separation for True level of measurement non-equivalence

None Weak Strong

(low phðtÞg) (high phðtÞg) One-step Two-step One-step Two-step One-step Two-step

Mean bias:
Weak Weak 0.001 −0:012 0.263 0.055 0.743 0.256
Weak Strong 0.003 −0:002 0.031 0.073 0.153 0.258
Strong Weak −0:003 −0:003 0.028 0.027 0.128 0.126
Strong Strong 0.000 −0:001 0.009 0.008 0.058 0.057
Root mean squared error:
Weak Weak 0.125 0.121 1.238 0.412 1.888 0.741
Weak Strong 0.088 0.086 0.312 0.267 0.520 0.480
Strong Weak 0.067 0.067 0.137 0.135 0.225 0.218
Strong Strong 0.058 0.058 0.079 0.079 0.118 0.116
Median absolute error:
Weak Weak 0.084 0.080 0.533 0.361 0.930 0.683
Weak Strong 0.055 0.057 0.288 0.244 0.514 0.438
Strong Weak 0.048 0.048 0.116 0.114 0.181 0.168
Strong Strong 0.036 0.036 0.059 0.059 0.090 0.089

Mean bias, root mean squared error (RMSE) and median absolute error (MAE) of two-step and one-step estimates of the structural parameters. The results are 
across the 2� 250 estimates of two coefficients of the covariate G (both with true value of 0.5) in the model for lower-level latent class X, over 250 simulation 
replications in each of the twelve simulation conditions in Table 1.

Table 3. Estimation under correctly specified model for measurement non- 
equivalence (MNE).

Class separation for Level of measurement non-equivalence

Weak Strong

(low phðtÞg) (high phðtÞg) One-step Two-step One-step Two-step

Mean bias:
Weak Weak 0.002 −0:021 −0:066 −0:118
Weak Strong 0.003 −0:011 −0:008 −0:101
Strong Weak −0:003 −0:006 −0:002 −0:056
Strong Strong −0:001 −0:001 0.004 −0:007
Root mean squared error:
Weak Weak 0.159 0.127 0.560 0.187
Weak Strong 0.098 0.086 0.222 0.134
Strong Weak 0.072 0.066 0.103 0.087
Strong Strong 0.059 0.058 0.060 0.054
Median absolute error:
Weak Weak 0.101 0.086 0.287 0.124
Weak Strong 0.069 0.059 0.139 0.109
Strong Weak 0.049 0.045 0.067 0.064
Strong Strong 0.037 0.035 0.041 0.035

Mean bias, root mean squared error (RMSE) and median absolute error (MAE) 
of two-step and one-step estimates of the structural parameters. The results 
are across the 2� 250 estimates of two coefficients of the covariate G (both 
with true value of 0.5) in the structural model for lower-level latent class X, 
over 250 simulation replications in each of the eight simulation conditions in 
table 1 that involve MNE.
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good adult citizen, and 0 if they thought it not very or not 
at all important.

These five binary variables are the measurement items 
(Yijh in the notation above). Individual-level latent classes 
(Xij) measured by them will characterise different profiles of 
what an adolescent considers important in a good citizen. 
We have hierarchical data where individual children (lower- 
level units j) are nested within countries (higher-level units 
i). We consider structural models where the proportions of 
Xij may vary by two country characteristics (non-constant 
covariates in Zij ¼ Zi), the country’s wealth and its civic 
freedom, specifically press freedom. We do not include 
covariates for the higher-level latent classes Wi; so ZH

i in 
the notation of Section 2 includes only a constant. Wealth is 
measured by logarithm of gross domestic product in U.S. 
dollars (covariate lnGDPusd), and a covariate on press free
dom is based on the 2016 World Press Freedom Index 
(PFI) by Reporters Without Borders. Civic freedom has pre
viously not been considered as an explanatory variable in 
the latent class analysis citizenship norms literature. For 
clarity of this illustrative example, we consider data from 
two groups of countries which have very different levels of 
press freedom. Five of the countries are among those with 
the highest levels of PFI—Finland (ranked 1st), Netherlands 
(2), Norway (3), Denmark (4), and Sweden (8)—and three 
among the lowest—Colombia (134), Russia (148), and 
Mexico (149). We define a dummy variable (lowPFI) which 
is 1 for the countries in the low-PFI group and 0 for the 
high-PFI group.1 The sample sizes range from 2,728 
(Netherlands) to 7,138 (Russia), with a total combined sam
ple of 40,837 respondents.

We also allow for the possibility of MNE in some of the 
items, with respect to lowPFI. The two groups of countries 
defined by it have very different constraints on political 
expression, and the different activities mentioned in the sur
vey items may have different relative salience for adoles
cents’ perceptions on what it takes to be a good citizen. In 
particular, we speculate that this may be the case for sup
port for environmental protection, promotion of human 
rights, and participation in peaceful protests, which are 
more public and/or politically contentious activities. We 
therefore consider the possibility of MNE in these items. 
The citizenship norms literature has not previously analyzed 
civic freedom as a potential confounding variable in the 
identification of latent classes.

We first identified the optimal number of latent classes. 
This was based on the Bayesian information criterion (BIC) 
combined with considerations of substantive clarity of the 
estimated LC structure. A general recommendation is to 

perform this first step of model selection without covariates 
and under the assumption of equivalence of measurement 
(Masyn, 2017). We first estimated single-level models with 
one to five latent classes, and concluded that the four-class 
specification was preferred. We then estimated two-level LC 
models, with individual countries as the higher-level units, 
still with equivalence of measurement and without covari
ates. With four lower-level classes, the best BIC value was 
obtained for a model with three higher-level classes. This 
multilevel model is preferred to the four-class single-level 
model, indicating that allowing for the hierarchical cluster
ing structure is desirable. We select the two-level model 
with four high-level and three low-level classes for the rest 
of the modeling.

In the second step of model selection, we add MNE with 
respect to lowPFI to this multilevel model. We consider it 
for all combinations of the three items envir, rights, and pro
test, both when allowing MNE to vary across classes and 
when restricting MNE to be invariant (on the logit scale) 
across classes (i.e., constraining the coefficient of lowPFI in 
dhrjt ¼ dhr in Equation (5) not to depend on latent class t). 
Here lowPFI, i.e., the covariate in Z�ij; is included also in the 
model for the latent class variable Xij: The best BIC value is 
obtained for a model which includes class-invariant MNE in 
two items, envir and protest. In particular, it is preferred to 
a model with full equivalence of measurement. This indi
cates that MNE is present in the data.

Estimates of the measurement model parameters h1 for 
the selected model from this step are also the step-1 esti
mates of these parameters for two-step estimation, as dis
cussed in Section 3. The item response probabilities implied 
by this model are shown in Table 4. The first class places 
importance on all five items. The second class emphasizes 
the items related to specific topics (local, envir, rights), but 
not as much or at all the ones related to method of engage
ment (discuss, protest). Individuals belonging to the third 
class have middling probabilities of endorsing each of the 
items, and those in the fourth class do not place importance 
on any of them as criteria for a good adult citizen. We label 
class 1 Maximal, class 2 Topic, class 3 Medium, and class 4 
Unengaged. The same interpretation of the classes would 

Table 4. Item response probabilities for the four lower-level (individual-level) 
classes, describing different profiles of engaged citizenship norms.

Model with full

Selected model measurement equivalence

Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 1 Cl. 2 Cl. 3 Cl. 4

Item Maximal Topic Medium Uneng. Maximal Topic Medium Uneng.

local 0.981 0.961 0.600 0.096 0.980 0.961 0.660 0.113
discuss 0.953 0.000 0.294 0.074 0.981 0.001 0.298 0.091
rights 0.988 0.988 0.668 0.000 0.985 0.981 0.730 0.032
envir 0.984 1.000 0.772 0.210

lowPFI ¼ 0 0.977 0.998 0.693 0.166
lowPFI ¼ 1 0.987 0.999 0.796 0.255

protest 0.879 0.668 0.360 0.065
lowPFI ¼ 0 0.831 0.562 0.330 0.035
lowPFI ¼ 1 0.885 0.666 0.434 0.054

The probabilities are shown for a model where the measurement models of 
items envir and protest are non-equivalent with respect to the binary covariate 
lowPFI (countries with high vs. low levels of press freedom), and for a model 
where all the measurement probabilities are equivalent across countries.

1An alternative analytical approach would be to use the original continuous 
PFI score, which is ranging from 0 to 100. In this empirical example, we focus 
on the binary low -high classification for ease of interpretation. Because the 
variation in PFI score between the five countries is substantially larger 
between these two groups than within these groups, we expect this choice of 
analytical approach has little qualitative impact on the results (among the 
low-PFI countries, the PFI scores are 55.89, 50.97, and 50.67 for Colombia, 
Russia, and Mexico, respectively; among the high-PFI countries, they are 
91.41, 91.24, 91.21, 91.11, and 87.67 for Finland, Netherlands, Norway, 
Denmark, and Sweden, respectively).
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also be obtained from a model which constrains the meas
urement models to be fully equivalent, item probabilities 
from which are also shown in Table 4 for comparison. The 
implications for allowing for MNE are seen in the probabil
ities for items envir and protest in the selected model. Here 
in all classes the probabilities of endorsing these items are 
higher in countries with low press freedom. In other words, 
adolescents in countries with low levels of press freedom are 
more uniformly likely to regard support for environmental 
protection and participation in peaceful protests as charac
teristics of a good adult citizen than are adolescents in 
countries with more press freedom.

Table 5 shows the estimated proportions of the latent 
classes after this first step, again for the selected model and 
for the full equivalence model for comparison. For the 
selected model, these probabilities are averaged over the 
sample proportions of the two values of lowPFI. In broad 
terms, the most noticeable difference between the higher- 
level classes is that one of them (class 2 in the table) has 
substantially higher probabilities than the other two classes 
of individuals belonging to the two lower-level classes (class 
Medium and Unengaged) which place least importance on 
these items as indicators of good citizenship. Averaged over 
the probabilities of the higher-level classes, the estimated 
proportions of individuals in the lower-level classes in the 

selected model are 0.37, 0.26, 0.29 and 0.07 for the 
Maximal, Topic, Medium and Unengaged classes 
respectively.

Finally, we estimate the structural model for the individ
ual-level latent class given the covariates lowPFI and 
lnGDPusd. The estimated coefficients of this multinomial 
logistic model are reported in Table 6, again showing results 
based on the selected measurement model with MNE and, 
for comparison, a model with full measurement equivalence. 
Table 6 shows two-step estimates of the parameters of the 
structural model, estimated as described in Section 3, and 
with the measurement parameters fixed at their estimated 
values from Table 4. The reference category for a respond
ent is here the class Unengaged. Considering the estimates 
from the selected model, the results show that adolescents 
living in countries with less press freedom are increasingly 
more likely to have norms that emphasize more activities, 
relative to having “unengaged” norms, even after controlling 
for GDP. The coefficients of lnGDPusd indicate that individ
uals in higher-GDP countries are most likely to belong to 
the class Maximal which regards all the activities as impor
tant for good citizenship, but less likely to belong to the 
class Topic which de-emphasises the role of discussion only 
and (to a lesser extent) participation in peaceful protests. 
These differences between the more engaged classes 
(Maximal and Topic) and the less engaged classes (Medium 
and Unengaged) are substantively large and statistically sig
nificant (by conventional criteria) with respect to both cova
riates. In contrast, neither covariate makes a significant 
difference on the distinction between the two less engaged 
classes.

Comparing the estimates under the two specifications 
on measurement, we can see, in particular, that the coeffi
cients of lowPFI are consistently less strong when we 
allow for measurement non-equivalence. This happens 
because some of the association between lowPFI and the 
responses is accounted for by measurement differences, 
that is, by the fact that the specific activities that have 
MNE are overall relatively more salient for adolescents in 
countries with low press freedom. where lowPFI is 1. 
Even after accounting for this, however, it is clear that 
adolescents in countries with low levels of press freedom 
are substantially more likely to be of the view that good 
citizenship is something that encompasses a larger number 
of activities.

6. Concluding Remarks

We proposed a two-step estimation approach for multilevel 
latent class models with covariates in the presence of meas
urement non-equivalence. The method involves estimating 
the measurement model in the first step, and then holding 
its parameters fixed at their estimated values in the second 
step where the structural model for the classes given covari
ates is estimated. The key modification that is needed here, 
compared to two-step estimation of models with full meas
urement equivalence, is that covariates which create non- 
equivalence of measurement need to be included already in 

Table 5. Estimated proportions of the three higher-level (country-level) latent 
classes, and of the four lower-level (individual-level) latent classes within the 
higher-level classes.

Model with full

Selected model measurement equivalence

Higher-level class (proportion) Higher-level class (proportion)

Lower-level class 1 (0.500) 2 (0.375) 3 (0.125) 1 (0.500) 2 (0.375) 3 (0.125)
Maximal 0.467 0.290 0.236 0.428 0.189 0.289
Topic 0.251 0.190 0.543 0.233 0.151 0.549
Medium 0.226 0.408 0.185 0.273 0.493 0.141
Unengaged 0.055 0.112 0.036 0.066 0.167 0.021

The probabilities are shown for the selected model where the measurement 
models of items envir and protest are non-equivalent with respect to the bin
ary covariate lowPFI (and averaging over the sample distribution of this vari
able) and for a model where all the measurement probabilities are equivalent 
across countries.

Table 6. Estimated coefficients of the covariates lowPFI (dummy variable for 
countries that have low press freedom Index) and lnGDPusd (country’s log 
GDP in US dollars) in a multilevel model for individual-level latent classes.

Coefficient (in model vs. class Unengaged)

Model with full

Selected model measurement equivalence

Covariate Maximal Topic Medium Maximal Topic Medium

lowPFI 0.963��� 1.657��� 0.423 1.125��� 1.987��� 0.619���

lnGDPusd 0.561��� −0:371�� 0.184 0.516� −0:440� 0.059
�p < 0.05,
��p < 0.01,
���p < 0.0001.
These estimates are from the second step of two-step estimation. The meas
urement model for the items given the latent classes is fixed at the estimated 
parameters of the selected model which allows for measurement non-equiva
lence in two items (on the left) or of a model where all the measurement 
probabilities are equivalent across countries (on the right). The fixed measure
ment probabilities of these two choices are as shown in Table 4.
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the first step. Their direct effects on measurement indicators 
are estimated there, while their coefficients (and those of 
any other covariates) in the structural model are estimated 
in the second step.

From a simulation study we observed that the proposed 
estimator performs generally well when the model is cor
rectly specified, and essentially as well as the one-step max
imum likelihood estimator which estimates all parameters at 
once. The performance of both estimators deteriorates to 
some extent in settings where the measurement model is 
weak and there is strong non-equivalence of measurement. 
The simulations also gave some evidence that two-step esti
mates are more robust to model misspecification which 
occurs when the measurement is incorrectly taken to be 
equivalent.

We have argued that two-step estimation has in principle 
two kinds of advantages over one-step estimation, the com
putational and the conceptual. The conceptual one is that 
estimating and fixing the measurement model before we 
proceed to estimate structural models for the latent classes 
means that the definition of the classes is then also fixed, 
and will not change even if we estimate and compare mul
tiple different structural models. This advantage holds 
unchanged even when the models involve measurement 
non-equivalence. The computational advantage of two-step 
estimation, on the other hand, is somewhat reduced here. 
This is because the first step now includes also those covari
ates that are needed to account for the non-equivalence, 
making this step too more complex in comparison to when 
there is an absence of non-equivalence. It remains the case, 
however, that thereafter estimation is less demanding than it 
would be in one-step estimation. This is because in the two- 
step approach it will involve only the structural parameters, 
whereas the measurement parameters are fixed rather than 
repeatedly re-estimated.

As always, some questions on the properties and proce
dures of these methods are left open. We mention in par
ticular questions of model selection. For multilevel latent 
class models with measurement non-equivalence this 
involves multiple dimensions: choosing the number of 
latent classes at the lower and higher levels, as well as 
determining which covariates are involved in non-equiva
lence and in what ways. Decisions on these dimensions 
could affect each other. In this paper we did not examine 
this question but employed a particular approach in line 
with previous literature. However, more systematic under
standing of different approaches that could be used here 
would still be desirable.
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