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Abstract
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a direct effect exists between indicators of the LC model and covariate, and the
direct effect is ignored.
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Introduction

Latent class (LC) analysis is an approach used to create a clustering of a set of observed
variables, based on an underlying unknown classification. For example based on indicators such
as intensity and type of internet use Hsieh & Yang (2011) used LC analysis to identify distinctive
clusters of internet usage segments in Taiwan, such as business, amusement, entertainment and
online shopping, and leisure. In multilevel LC analysis the respondents are assumed to belong to
higher level groups, such as students nested in schools, or entrepreneurs in countries. Using mul-
tilevel LCA the higher level dependency is modeled by assuming that respondents nested in the
same higher level unit have more similar answers to each other than respondents coming from dif-
ferent units. For example Hsieh & Yang (2011) found that the internet user profiles in Taiwan can
be clustered into three segments: Southern Taiwan, Northern Taiwan, and metropolitan.

Multilevel LCA is becoming increasingly popular in various fields. For instance, in educa-
tional research, to model students’ learning profiles in different school types (Fagginger Auer et
al., 2016), or to model academic profiles (Lanza et al., 2010; Mutz et al., 2013) or to cluster psy-
chology students in different attitude types towards learning statistics and at the same time ob-
taining university segments based on the incidences of the different student attitude types (Mutz
& Daniel, 2013); in economics, to model asset ownership types of the elderly across Europe
(Paccagnella & Varriale, 2013); or epidemiology and health studies to model substance abuse
profiles nested in different communities (Rindskopf, 2006; Horn et al., 2008; Zhang et al., 2012;
Tomczyk et al., 2015), to mention a few. Some further examples from political science include
the modeling of heterogenity of what Europeans think is the cause of poverty (Da Costa & Dias,
2015), or changes in social capital over time (Morselli & Glaeser, 2018) or a typology of trust ori-
entation towards European institutions (Ruelens & Nicaise, 2020). In most applications the inter-
est lies at the lower level clustering, and the difference in the distribution of the lower level classes
at the higher level unit.

In LCA creating a clustering is usually only the first step for applied researchers. The re-
search interest often lies in explaining the clustering by co-variates. Examples include relating
heavy alcohol usage profiles to age, gender, education and religion (Rindskopf, 2006), or teen dat-
ing violence in China to demographic characteristics (Cheng et al., 2020).

While in single level LCA different approaches are available for relating LC membership to
external variables, in multilevel settings only two classical approaches are used, both known to be
suboptimal, namely the one-step and classical three-step approaches. Using the one-step approach
the full LC model including co-variates is estimated simultaneously (for example, Mutz & Daniel
(2013)). Using the alternative three-step approach, after estimating the measurement model in step
1, respondents are assigned to latent classes in step 2, and this posterior assigned class member-
ship is related to the predictors of interest through a multinomial logit regression in the third step
(for example Tomczyk et al. (2015)). However in the second step a classification error is intro-
duced, that if not corrected for induces systematic bias in the step 3 model.

To correct for the bias in the step 3 model of the three-step approach, in recent years two
bias-adjusted three-step approaches were developed for single level LC models - namely the ML
and BCH approaches (Bakk et al., 2013; Vermunt, 2010). The bias-adjusted three-step approaches
correct the bias in step 3 by explicitly modeling the classification error introduced in the previous
step. An alternative stepwise estimator, the two-step approach (Bakk & Kuha, 2018) after estimat-
ing the measurement model in step one, directly conditions on the step one parameter estimates
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in the second step when estimating the structural model, in this way avoiding the problem of the
classification error.
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The general recommendation in single level LCA is to use the two-step or bias-adjusted
three-step approaches to relate the LC measurement model to external variables of interest (As-
parouhov & Muthén, 2014), with the understanding that the two-step approach is the most flexible
to extend to more complex models (Bakk & Kuha, 2018; Di Mari & Bakk, 2018). The main rea-
son for using these stepwise estimators instead of the one-step approach is that misspecifications
in the structural model can influence the definition of the measurement model using the one-step
approach. For example direct effects between the co-variate and some indicators measuring the LC
variable can distort the parameters of interest, or perhaps can have an even more worrisome impact
on latent class enumeration - extracting more classes then necessary to model the direct effects
(also known as differential item functioning, DIF) (Cole et al., 2019; Masyn, 2017). Because they
separate measurement and structural model the bias adjusted stepwise approaches are known to be
more robust to misspecifications.

In the current paper we introduce the two-stage approach to multilevel LC modeling as an
alternative to the one-step and classical three-step approaches, since both are known to be sub-
optimal in single level LC models. The proposed two-stage estimator separates each step of the
model building, namely first the lower level LC model is built. Next while keeping the lower-level
measurement model fixed the higher level mixing proportions are selected. Finally conditioning
on the fixed parameter estimates of the two-level measurement model the structural model is esti-
mated. We investigate the robustness of the one-step and two-stage approaches towards misspecifi-
cations of the co-variate effect. We focus on one of the most common misspecifications, that is ig-
noring direct effect(s) between the covariate and indicators. Via a simulation study we investigate
the performance of the one and two-stage approaches with regard to bias and MSE when modeling
and ignoring the direct effects. We also investigate Type 1 error rate for models that misspecified
the relationship between the external variable of interest and the measurement model.

First we present the measurement model of the multilevel latent class model, and the in-
clusion of covariates using the one and two-stage approaches. We discuss the inclusion of direct
effects between the covariates and indicators for both modeling approaches, and following in a
simulation study we investigate the impact of misspecification of direct effects on the two model-
ing approaches under different levels of violations of the assumption of local independence. We
apply both approaches to a real data setting, and we conclude.

The multilevel latent class model

Consider the vector of responses Yij = (Yij1, . . . , YijK), where Yijk denotes the response
of individual i in group j on the k-th categorical indicator variable, with 1 ≤ k ≤ K and 1 ≤
j ≤ J , where K denotes the number of categorical indicators and J the number of level 2 units
(groups). In addition, we let nj denote the number of level 1 units within the j-th level 2 unit, with
1 ≤ j ≤ J . For simplicity of exposition, we focus on dichotomous indicators.

LC analysis assumes that respondents belong to one of the T categories (“latent classes”)
of an underlying categorical latent variable X which affects the responses (McCutcheon, 1987;
Goodman, 1974; Hagenaars, 1990). The model for Yij can then be specified as

P (Yij) =
T∑

t=1
P (Xij = t)P (Yij |Xij = t), (1)

where the weight P (Xij = t) is the probability of person i in group j to belong to latent class t.
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Wj

X1j X2j Xnjj. . .

Y1j1 Y1j2 . . . Y1jK Y2j1 Y2j2 . . . Y2jK Ynjj1 Ynjj2 . . . YnjjK

Figure 1. The multilevel latent class model.

The term P (Yij |X = t) is the class-specific probability of observing a pattern of responses given
that a person belongs to class t. Furthermore we make the “local independence” assumption that
the K indicator variables are independent within the latent classes, leading to

P (Yij) =
T∑

t=1
P (Xij = t)

K∏
k=1

P (Yijk|Xij = t). (2)

Note that the general definition in Equation (1) applies to both the standard and multilevel
LC model. To be able to distinguish the simple and multilevel LC model we can define the model
in terms of logit equations. In the simple LC model

P (Xij = t) = exp(γt)
1 +

∑T
t=2 exp(γt)

, (3)

for 1 < t ≤ T - where we have taken the first class as reference - and

P (Yijk = 1|Xij = t) = exp(βk
t )

1 + exp(βk
t )
. (4)

In the simple LC model the parameters γ and β do not have the subscript j, thus assuming
the clustering is independent of the higher level groups.

Extending the simple LC model to account for the multilevel data structure is possible
by allowing the parametrizations (3) and (4) to take the grouping (level 2 units) into account by
means of group-specific random coefficients. As such, the multilevel LC model can be seen as a
random coefficients logistic regression model (see, for instance Agresti et al., 2000) for an unob-
served dependent variable, which has several observed indicators (Vermunt, 2003). Therefore, the
parametrization of multilevel LC models can follow either the parametric approach or the non-
parametric approach (see also Finch & French, 2014). In the parametric approach, group-specific
effects are assumed to arise from a certain continuous distribution, typically Gaussian. In the non-
parametric approach (Aitkin, 1999; Laird, 1978), instead of a continuous distribution we assume a
multinomial distribution. Let Wj denote the value of group j on the latent class variable defining
the mixing distribution with M mass points each with probability P (Wj = m) = πm. In the non-
parametric approach the model for the (individual) latent class probabilities is specified (Vermunt,



TWO-STAGE MULTILEVEL LATENT CLASS MODELING 6

2003):

P (Xij = t|Wj = m) = exp(γtm)
1 +

∑T
s=2 exp(γsm)

. (5)

Also the mixing probabilities P (Wj = m) can be parametrized by means of logistic regres-
sions as follows

P (Wj = m) = exp(δ0m)
1 +

∑M
l=2 δ0l

, (6)

where parameters for m = 1 are set to zero for identification and the related class is set as refer-
ence. This is the most commonly used specification in applied research due to its simplicity.

Following the same logic, the conditional response probabilities of Equation (4) become

P (Yijk = 1|Xij = t,Wj = m) = exp(βk
tm)

1 + exp(βk
tm)

, (7)

for k = 1, . . . ,K, t = 1, . . . , T and m = 1, . . . ,M. This is the most general formulation
that is equal to an unrestricted multi-group LC model. In most applications, however, a more re-
stricted version is used (Vermunt, 2003; Lukociene et al., 2010) that assumes that item-conditional
probabilities (see Equation (7)) do not depend on the level 2 units – as in Equation (4). This is the
restriction we will apply also in the current paper (see Figure 1), leading to the following specifi-
cation for Yij :

P (Yij) =
M∑

m=1
P (Wj = m)

T∑
t=1

P (Xij = t|Wj = m)
K∏

k=1
P (Yijk|Xij = t). (8)

Under the parametrizations (3), (7) and (6), given a sample of observations from J groups -
each with nj individual units, for j = 1, . . . , J , with N =

∑J
j=1 nj - the log likelihood function

for model (8) can be written as:

logL(θ) =
J∑

j=1
logP (Yij), (9)

which we maximize in order to find the vector of model parameters θ. The numbers of classes M
and T are selected by comparing the goodness of fit of models with different values of M and T
using information criteria like AIC and BIC.

All the parts of the multilevel LC model can be estimated simultaneously. However the
choice of the number of latent classes on level 1 and level 2 is not so obvious. A generally used
recommendation is to use a stepwise procedure for model selection (Lukociene et al., 2010), by
first fitting a single-level LC model at the level 1 - defined in Equations 3 and 4. Once the cor-
rect number of classes at the lower level is selected, this number is held fixed and the number of
classes is estimated at the higher level. A general recommendation is that, once the higher level
classes are selected, these are kept fixed, and model selection is re-iterated at the lower level
one more time before adding covariates. In the stage of adding covariates the number of classes
should be fixed, also to be in line with general recommendations for LCA with covariates (Masyn,
2017). Readers interested in model selection for multilevel LCA model can also consult Yu & Park
(2014).
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Extending the multilevel LC model to include covariates

Classical approaches

Level 1 and level 2 covariates can be included to predict class membership. Denoting one
level 2 covariate by Z1j and a level 1 covariate by Z2ij the multinomial logistic regression for Xij

with a random intercept can be written as:

P (Xij = t|Wj = m,Z1j , Z2ij) = exp(γ0tm + γ1tZ1j + γ2tZ2ij)
1 +

∑T
s=2 exp(γ0sm + γ1sZ1j + γ2sZ2ij)

. (10)

A random slope for the level 1 covariate can be obtained by replacing γ2t by γ2tm.
Level 2 covariates can be used also to predict group class membership. To do so, the multi-

nomial logistic regression for P (Wj = m) can be modified as follows

P (Wj = m|Z1j) = exp(δ0m + δ1mZ1j)
1 +

∑M
l=2 exp(δ0l + δ1lZ1j)

. (11)

Under the parametrizations (10) and (11) that now include covariates, the model for Yij |Zj ,
where Zj = (Z1j , Z2ij)′, can be specified as

P (Yij |Zj) =
M∑

m=1
P (Wj = m|Z1j)

T∑
t=1

P (Xij = t|Wj = m,Z1j , Z2ij)
K∏

k=1
P (Yijk|Xij = t),

(12)
where we have further assumed that the observed indicators are conditionally independent

from the covariates given both level 1 and level 2 class memberships.
Using the one-step approach the full model needs to be re-estimated every time a new co-

variate is added keeping the number of lower and higher level classes fixed. Given the complexity
of such multilevel models, 1) estimating the full model multiple times can be time consuming, and
2) misspecifications in a part of the model may destabilize also parameters in other parts of the
model.

Two-stage estimation of multilevel LC models

An alternative option that would fit the logic of the stepwise modeling procedure is to apply
a two-stage estimation approach by extending the two-step approach proposed for simple LC mod-
els by Bakk & Kuha (2018) and applied to latent Markov models by Di Mari & Bakk (2018). We
apply the two-step logic in the multilevel context using a stage-wise approach. Namely, first the
lower level LC model is estimated (step 1 see Figure 2 ). Once the number of lower level classes
are selected the higher level LC model is estimated keeping the measurement model fixed at the
estimates from the previous step 1 (Step 2a see Figure 3). In this way only the mixing proportions
(at both levels) need to be re-estimated, keeping the P (Yij |Xij) fixed at the values estimated in
step 1. Similarly to the simultaneous estimation, once the higher level LC model is selected, keep-
ing this part fixed, the model for P (Yij |Xij) can be re-estimated to adjust for possible missspec-
ifications due to grouping at level 2 (Step 2b see Figure 4). Finally, the covariates can be added to
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Y111 Y112 . . . Y11K Ynjj1 Ynjj2 . . . YnjjK YNJ1 YNJ2 . . . YNJK

Figure 2. Stage 1 Step 1: simple latent class model on the pooled observations - multilevel struc-
ture of the data is not taken into account. This step is equivalent to simple LCA on the pooled ob-
servations.

Wj

X1j X2j Xnjj. . .

Y1j1 Y1j2 . . . Y1jK Y2j1 Y2j2 . . . Y2jK Ynjj1 Ynjj2 . . . YnjjK

fix
ed

fix
ed

fixed

fix
ed

fix
ed

fixed

fix
ed

fix
ed

fixed

Figure 3. Stage 1 Step 2.a: multilevel latent class model with measurement model kept fixed at
Step 1’s values.

the model keeping the measurement model fixed (Step 3 see Figure 5) . In the next section we de-
scribe in detail each step of the proposed estimator. We shall distinguish between the steps without
covariates (steps 1, 2a and 2b) - which we refer to as stage 1 of multilevel LC model building - and
the step(s) with covariates (step 3) - which we refer to as stage 2.

The steps of the two-stage estimation for multilevel LC model with covariates

Stage 1: Unconditional LC model building

Step 1: Simple LC model. In this step (Figure 2) a simple LC model is estimated on
the pooled data Tmax times, where Tmax is a pre-specified maximum number of latent classes
for X . We let θ(T )

1 = (β1
21 , . . . , β

1
T1
, . . . , β1

TJ
, . . . , βK

21 , . . . , β
K
T1
, . . . , βK

TJ
)′ for each choice of

T = 1, . . . , Tmax. Under the parametrizations (3) and (4), and a sample of N observations - where
N =

∑J
j=1 nj - the log likelihood function of the first step model can be specified as follows

logL(θ1) =
N∑

i=1
logP (Yij), (13)
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Figure 4. Stage 1 Step 2.b: measurement model is updated to account for possible interaction ef-
fects with high level parameters.
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Figure 5. Stage 2 Step 3: covariates Z1j and Z2ij are loaded on Xij and Wj , keeping measure-
ment model parameters fixed. Note that this step can be carried out either simultaneously or in two
separate sub-steps: 3.a) covariates loaded only in the equations for Xij , for all j; 3.b) keeping the
parameters estimated in 3.a fixed, covariates are loaded on Wj .

which we maximize in order to find the ML estimates of the LC model parameters, which we call
θ̂

(T )
1 = (β̂1

21 , . . . , β̂
1
T1
, . . . , β̂1

TJ
, . . . , β̂K

21 , . . . , β̂
K
T1
, . . . , β̂K

TJ
)′. Then, the optimal number of classes

T ∗ is selected such that T ∗ = min
T =1,...,Tmax

I(T ) - where I(T ) is some information criterion like

AIC or BIC - along with the corresponding ML estimates θ̂1 from which we have suppressed the
superscript (T ) for simplicity of notation.

Step 2.a: multilevel LC model. In this step (Figure 3), the group level measurement
model parameters of the multilevel LC model are estimated keeping measurement model param-
eters at the lower level fixed at θ̂1. In the same way as for Step 1, this step has to be carried out
Mmax times, where Mmax is a pre-specified by the user number of latent classes for W . We let
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θ
(M)
2 = (δ2, . . . , δM , . . . , γ021, . . . , γ0T 1, . . . , γ0T M )′ for each choice of M = 1, . . . ,Mmax.

Under the parametrizations (4), (5) and (6), and a sample of J groups - each with nj individual
units, for j = 1, . . . , J - the log likelihood function of the step 2.a model can be written as follows

logL(θ2|θ1 = θ̂1) =
J∑

j=1
logP (Yj), (14)

where |θ1 = θ̂1 indicates that the measurement model parameters are kept fixed at θ̂1. The function
(15) is maximized with respect to the unknown θ2 to find ML estimates θ̂2.

Step 2.b: Re-update the measurement model. In this step (Figure 4) the level 1 mea-
surement model is re-estimated, keeping fixed the level 2 model parameters. This is done in or-
der to re-adjust the lower- level measurement model if necessary based on the selected number of
higher level classes. Note that in principle, as for step 1, this step can be carried out Tmax times
- i.e. freeing also the parameters on X’s equations and re-estimating the optimal number of low
level classes. Such a full step maybe unnecessary in most situations (see Lukociene et al. (2010)).

Given a sample of J groups - each with nj individual units, for j = 1, . . . , J - and vector of
estimates θ̂2 from the previous step, under the parametrizations (4), (5) and (6), the log likelihood
function of the step 2.b model can be written as

logL(θ1|θ2 = θ̂2) =
J∑

j=1
logP (Yj). (15)

This specification, with respect to that of Step 1, now takes the multilevel structure of the
data into account.

Stage 2: including covariates

Step 3: including predictors for class memberships. As the next step the covariates can
be added to the model (Figure 5). A decision needs to be taken whether a stepwise approach is
preferred (adding first lower level covariates, and after fixing those adding at the higher level) or
all covariates can be added in a single step. The benefit of the first option can be robustness, how-
ever no simulation or theoretical results are available and this still needs further research. For sake
of conciseness, we will present the simultaneous step; its split counterpart can be derived analo-
gously.

Let us define θ3 = (γ12, . . . , γ1T , γ22, . . . , γ2T )′. With the parametrizations specified in
Equations (4), 10 and (11), the model log-likelihood can be written as follows

logL(θ2, θ3|θ1 = θ̂1) =
J∑

j=1
logP (Yj |Zj), (16)

which we maximize with respect to θ2 and θ3 keeping θ1 fixed at its step 2.b values θ̂1.

Modeling direct effects between covariates and indicators of the LC model

While the model defined in Equation (12) assumes conditional independence between the
indicators and the covariate given the latent class variable, in some cases this assumption can be
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violated. Such violation is also known as differential item functioning (DIF). Such violation exists
for example when an item has a different difficulty for boys and girls in an educational tests (lower
level Z) or an item has different difficulty in different countries (higher level Z). The LC model
can be extended to relax the conditional independence assumption, by allowing a direct effect.
Keeping the assumption that the measurement model does not depend on W we modify Equation
2 as:

P (Yij = 1) =
T∑

t=1
P (Xij = t)

K∏
k=1

P (Yijk|Xij = t, Z1j , Z2ij). (17)

The model defined in equation 17 can be expressed in terms of a logit equation:

P (Yijk|Xij = t, Z1j , Z2ij) = exp(βk
t + β1tkZ1j + β2tkZ2ij)

1 + exp(βk
t + β1tkZ1j + β2tkZ2ij)

. (18)

Equation 18 defines the most general form to allow for direct effect on the indicators from
covariates at the lower and/ or higher level.

Using the one-step approach the full LC model is estimated allowing for all necessary di-
rect effects. Using the two-stage approach on the other hand the measurement model is kept fixed
at the estimates from Stage 1 step 2b for the indicators for which no DIF is assumed, and the con-
ditional item probabilities are re-estimated using Equation 18 for the indicators for which the as-
sumption of DIF is being relaxed. In this way the two-stage approach is more parsimonious. Using
the classical or even the bias-adjusted three-step approaches the modeling of DIF is not possible.

While modeling direct effects with both one and two-stage approaches is possible this is
often not done in practice. The reasons for these are diverse: most importantly increased model
complexity makes interpretation more difficult. Furthermore detecting direct effects is difficult.
The literature recommends using overall fit statistics or residual statistics (Oberski et al., 2013),
but no clear consensus exists about the power of detecting such effects for multilevel LC models
(Nagelkerke et al., 2015).

In the current paper we focus on understanding the effect on parameter bias of the parame-
ters of interest (X|Z) if direct effects are ignored.

Simulation study

We carry out a simulation study to investigate the performance of the proposed two-stage
estimator as compared to the simultaneous estimator with regard to bias and efficiency. Next to the
situation where all model assumptions are met we also investigate the impact of ignoring direct
effect(s) in multilevel LCA. For this purpose we generated data from 5 population models with
different types of direct effects. We followed the setup by Nylund-Gibson & Masyn (2016), who
investigated the impact of DE misspecification on class enumeration for single level models. We
go a step further and investigate the impact on parameter bias in multilevel setting. Two of the five
settings are population models where only indirect effect between X,Z exist via a direct effect
of Z on indicator(s) Y . While this situation can be a common population model, it is hardly used
in data analysis, as most models include the direct X,Z association. As such investigating how
modeling the X,Z association while ignoring the true Y,Z association shows Type 1 error rates in
such complex settings.
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Yij1 Yij2 Yij3 Yij4 Yij5

(a) Population A (PA).
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Yij1 Yij2 Yij3 Yij4 Yij5

(b) Population B (PB).

Wj

X1jZ2ij

Yij1 Yij2 Yij3 Yij4 Yij5

(c) Population C (PC).

Wj

X1jZ2ij

Yij1 Yij2 Yij3 Yij4 Yij5

(d) Population D (PD).

Wj

X1jZ2ij

Yij1 Yij2 Yij3 Yij4 Yij5

(e) Population E (PE).
Figure 6. Population models.

Population models

We generate data from 5 models with DE for 2 separate Z variables, namely at the lower
and higher level, so that we have 10 data generating models. The 5 models are presented in Figure



TWO-STAGE MULTILEVEL LATENT CLASS MODELING 13

6 for the Z at lower level. The same effect size measures are used for Z at the higher level as well.
All the population models were specified to be measured by 5 binary indicator variables, measur-
ing 2 classes at the lower level with all indicators having a high probability of a positive answer
(P (Y |X) = 0.80)) in one class, and low in the other class (P (Y |X) = 0.20)). At the higher
level we have W = 2 classes. We have two scenarios for class sizes, with equal and unequal class
sizes at both the lower and higher level. In the equal class sizes scenario the class sizes were set
at π1 = π2 = 0.5 at both the lower and higher level, and in the unequal class sizes scenario to
π1 = 0.8, π2 = 0.2. We generated data from a population with 20 groups at the higher level, and
with sample size nj 500 and 1000 at the lower level.

In model PA, PB and PC, β1t for the effect of Z2ij on Y4 was set to 1 in the models with a
lower level covariate. In models with a higher level covariate β2tZ1j was set to 1 as well. In model
PB, PD and PE the size of the direct effect of Z on Y4, was set to 1 for both the lower (β1t4Z2ij)
and higher level (β2t4Z1j) setting. In model PC the direct effect in class one was set to 0.5, and in
class two to 1.5.

Analysis models

In all instances we analyze the data using the PA model (which is the most common model
used in practice) and the true data generating model, using the one and two-stage approaches. R is
used for data manipulation and Latent GOLD for the estimation of the LC models.

Results

In Table 1 we show the simulation results for the data generating models PA, PB and PC
for the data generated with equal class sizes at both levels, and group level Z. We zoom in on the
main effect of Z on X , and show for each data generating condition the results with the PA model
(ignoring DE between Z and Y ), and the true data generating model. The results under the PA
data generating model show that when all model assumptions are met both the one and two-stage
estimators are unbiased, with very similar coverage (somewhat above the nominal 95 % rate),
MSE and SE/SD.

For the data generating models PB and PC analyzing the data ignoring the direct effect in-
troduces a bias in the parameter of interest with both the one and two-stage approaches (the effect
size of the bias is marginally smaller with the two-stage approach). Interestingly enough the cover-
age even with the PA model is above the nominal level, possibly due to a larger SE estimate.

Table 2 presents some results for data generated under models PD and PE, that have a direct
effect between Z, Y , but no relationship between Z,X . Analyzing these populations with model
PA, which assumes no direct effect between Z and any of the indicators, only indirect effect via
X sheds light on the Type 1 error using the wrong PA model. As the last column of Table 2 shows
this Type 1 error rate is above 5% in all situations, and with the number of direct effects increas-
ing it can go as high as 56% in the conditions presented. The Type 1 error rate is also higher under
both the PE and PD data generating model for the larger sample size. Using the correct data gen-
erating model to analyze the data with both one and two-stage approaches the bias is negligible in
the parameters of interest, and the coverage rate above the nominal rate. This is also the case for
the models PA to PC.

Table 3 shows the results for data generated from models PA to PC for uneven class sizes
with Z at higher level. The results are similar to the previous condition with regard to bias, cover-
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Data analysis model/ One-step Two-stage
sample size Data generating model: PA
PA model Bias Coverage MSE SE/SD Bias Coverage MSE SE/SD

500 0.01 0.96 0.05 0.94 0.01 0.96 0.05 0.94
1000 0.00 0.97 0.02 1.00 0.00 0.97 0.02 1.00

Data generating model: PB
PA model

500 -0.17 0.99 0.08 0.93 -0.15 0.99 0.07 0.94
1000 -0.16 1.00 0.05 0.96 -0.14 1.00 0.04 0.97

PB model
500 -0.01 0.98 0.05 0.95 -0.01 0.98 0.05 0.95
1000 0.00 0.97 0.02 0.99 0.01 0.97 0.02 0.98

Data generating model: PC
PA model

500 -0.11 1.00 0.06 0.95 -0.09 1.00 0.06 0.96
1000 -0.11 0.99 0.04 0.99 -0.10 0.99 0.03 0.99

PC model
500 0.01 0.98 0.05 0.98 0.01 0.98 0.05 0.98
1000 0.01 0.97 0.02 0.99 0.01 0.97 0.02 0.99

Table 1
Parameter bias, Coverage, MSE and SE/SD for γ1 = 1 measuring the direct effect of X|Z for data
generated from models PA, PB, and PC, analyzed with model PA for even class sizes, group level
Z.

Model Sample size Bias Coverage MSE Type 1E
Data generating model PD

PD model PA model
One-step 500 -0.01 0.97 0.06 0.11

1000 0.00 0.98 0.03 0.16
Two-stage 500 0.00 0.97 0.06 0.11

1000 0.00 0.97 0.03 0.15
Data generating model PE

PE model Average effects PA model
One-step 500 -0.02 0.99 0.07 0.29

1000 -0.02 0.98 0.04 0.56
Two-stage 500 -0.02 0.99 0.07 0.29

1000 -0.01 0.97 0.04 0.56
Table 2
(Average) Bias, Coverage and MSE of the Direct effect(s) of Z on Y for models PD and PE, and
Type 1 error rate for P (X|Z) for analyzing data generated from Models PD and PE with model
PA even class sizes, group level Z.
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Data analysis model/ One-step Two-stage
sample size Data generating model: PA
PA model Bias Coverage MSE SE/SD Bias Coverage MSE SE/SD

500 -0.01 0.96 0.03 1.00 -0.00 0.96 0.03 0.94
1000 0.00 0.97 0.01 1.00 0.01 0.97 0.01 1.00

Data generating model: PB
PA model

500 0.11 0.86 0.04 1.00 0.13 0.83 0.04 0.94
1000 0.10 0.82 0.02 0.92 0.12 0.77 0.03 0.92

PB model
500 -0.00 0.97 0.01 1.00 0.01 0.97 0.03 1.00
1000 -0.01 0.97 0.01 0.99 -0.00 0.97 0.01 1.00

Data generating model: PC
PA model

500 0.10 0.87 0.04 1.00 0.13 0.83 0.04 0.94
1000 0.09 0.85 0.02 0.92 0.11 0.78 0.03 0.92

PC model
500 -0.00 0.97 0.03 1.00 0.01 0.96 0.03 1.00
1000 -0.01 0.98 0.01 1.00 -0.01 0.98 0.01 1.00

Table 3
Parameter bias, Coverage, MSE and SE/SD for γ1 = 1 measuring the direct effect of X|Z for data
generated from models PA, PB, and PC, analyzed with model PA and the data generating model
for the two levels of sample size conditions. Uneven group-level class sizes group level Z.

Model Sample size Bias Coverage MSE Type 1 E
Data generating model PD

PD model PA model
model sample bias coverage PD MSE Type 1E

One-step 500 -0.03 0.98 0.07 0.35
1000 -0.02 0.98 0.04 0.45

Two-stage 500 -0.02 0.98 0.07 0.34
1000 -0.01 0.98 0.04 0.44

Data generating model PE
PE model Average effects PA model

One-step 500 0.00 0.97 0.07 0.47
1000 -0.01 0.97 0.04 0.54

Two-stage 500 0.00 0.97 0.07 0.46
1000 -0.01 0.97 0.04 0.52

Table 4
(Average) Bias, Coverage and MSE of the Direct effect(s) of Z on Y for models PD and PE, and
Type 1 error rate for P (X|Z) for analyzing data generated from Models PD and PE with model
PA. Uneven group-level class sizes group level Z.
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age, MSE and SE/SD. The two-stage model shows similar performance to the one-stage approach.
As the strength and amount of misspecification increases the bias in the PA model increases. Table
4 shows the results for models PD and PE for the uneven class size model with Z at higher level.
Similarly to the even class size condition when PA model is used the Type 1 error rate is high with
both estimators, but using the correct data generating model the bias is almost nonexistent with
both estimators. The supplementary materials show the results for data generated with Z at the
lower level. The results show the same tendencies there as well.

Application: Predicting task variety in self managing teams

We illustrate the use of the two-stage estimator based on a dataset collected by van Mierlo
et al. (2005) in 5 large scale health care organizations in the Netherlands. The dataset is available
as example dataset in Latent Gold (Vermunt & Magidson, 2013) and was used by Vermunt (2003)
when introducing the one-stage multilevel latent class model. The LC model is based on 5 indi-
cators measuring the perception of task variety of employees. The initial four response categories
were collapsed into two. The 5 items (translated from Dutch) are (with the shorthand notation in
parentheses):

• Do you always do the same things in your work [Nonrepetitive]

• Does your work require creativity? [Creativity]

• Is your work diverse? [Diverse]

• Does your work make enough usage of your skills and capacities? [Capacity]

• Is there enough variation in your work? [Variation]

Following Vermunt (2003) we present a model with two classes at both the higher and the
lower level using the non parametric parametrization1. On the employee level the larger class, the
"Diverse" (65%) class is characterized by high levels of task variation, diversity and creativity.
On the other hand the "Structured" class (35%) is characterized by repetitive, not creative, and
unvaried tasks. On the group level members of teams in the first group-level class (66% of teams)
are most likely to belong to the first individual-level class, having more diverse tasks, involving
more capacity and variation. The second group level class is comprised of teams whose members
are most likely to belong to second individual level class, having more uniform, repetitive tasks.

In the next step we add covariates to the model, explaining membership in the task variety
employee level classes by age, job tenure,working hours and gender (for all covariates the same
re-coding is applied as in the dataset that can be found in Latent GOLD as example dataset for
multilevel LCA (Vermunt & Magidson, 2013)). The estimates obtained with the one and two-stage
estimators are very similar as we can see in Table 6. Tenure and working hours have a significant
effect on class membership. The first cluster has the oldest workers, while the younger age groups
are more likely to be associated with the second Structured class. At the same time the Structured
class is associated with less working hours than the Diverse class. Gender and age are not signif-
icant predictors. After running the model with covariates we investigated the residual association

1Readers interested in a detailed description of model selection for this dataset can consult Nagelkerke et al. (2015),
in the following we focus on the simplest model introduced by Vermunt (2003) that suffices for our example.
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Gclass 1 Gclass 2 Class 1 Class 2
Diverse Uniform Diverse Structured

Size 0.66 0.34 0.65 0.35
nonrepetitive 0.43 0.28 0.51 0.14
creative 0.61 0.44 0.71 0.27
diverse 0.80 0.49 0.97 0.20
capacity 0.74 0.58 0.83 0.42
variation 0.77 0.46 0.93 0.17
class 1 0.79 0.39 . .
class 2 0.21 0.61 . .

Table 5
The multilevel latent class model of task-variety

One-step Two-stage
β SE β SE

age (young) -0.20 0.09 -0.20 0.09
age (mid) -0.07 0.07 -0.07 0.07
age (old) 0.05 0.08 0.05 0.08
tenure (low) -0.18 0.08 -0.17 0.08
tenure (high) -0.08 0.08 -0.08 0.08
working hours (part time) -0.25 0.07 -0.25 0.07
working hours (full time) 0.15 0.08 0.15 0.08
gender (male) -0.06 0.10 -0.06 0.09

Direct effects
age (young) -0.20 0.09 -0.20 0.09
age (mid) -0.07 0.07 -0.07 0.07
age (old) 0.05 0.08 0.06 0.08
tenure (low) -0.18 0.08 -0.17 0.08
tenure (high) -0.08 0.08 -0.08 0.08
working hours (part time) -0.23 0.07 -0.23 0.07
working hours (full time) 0.15 0.08 0.15 0.08
gender (male) -0.06 0.10 -0.06 0.09
working hours on capacity -0.36 0.11 -0.36 0.11
working hours on capacity -0.04 0.14 -0.04 0.14

Table 6
Covariate effects on the task-variety latent classes estimated using one-step and two-stage ap-
proaches for no direct effect and with direct effect on the capacity item
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Dependent nonrepetitive creative diverse capacity variation
nonrepetitive .
creative 1.1982 .
diverse 0.009 4.2479 .
capacity 0.6336 0.1291 2.1765 .
variation 0.0461 1.0044 0.2956 1.6647 .
Independent nonrepetitive creative diverse capacity variation
age 2.6127 1.8704 0.1405 0.3997 0.0986
tenure 3.2531 1.2789 0.001 3.0518 0.1009
working hours 1.995 1.3908 0.3431 5.388 1.0515
gender 4.1779 3.3911 0.3207 2.715 0.857
Twolevel nonrepetitive creative diverse capacity variation
Group 1.5345 1.3146 0.6537 0.9965 0.6484
Pairs 1.3852 1.8547 0.0892 0.1948 0.0737

Table 7
Bivariate residual statistics for the model with covariate effect on the lower level classes

between the items of the LC model and the covariates using the bivariate residuals (BVR), see Ta-
ble 7. As a rule of thumb values higher than 3 show evidence of some residual association2 As
working hours showed a high residual association with capacity (BVR=5.89) we allowed for a di-
rect effect between the two. The model with direct effects is shown in the lower half of Table 6.
We can see that adding the direct effect the general conclusions do not change significantly in this
case. The effect of working hours on the latent classes decreases marginally, and the direct effect
is significant, showing a higher effect of working hours on the first class. The overall conclusion
for the rest of the model is not affected.

Discussion

We introduced a two-stage estimator of the multilevel latent class model, that separates the
estimation of the measurement and structural model by fixing the measurement model parame-
ters to values estimated at the first stage when estimating the structural model (second stage). The
proposed estimator is flexible enough to allow for freeing paramaters of the measurement model
while estimating the structural model where necessary.

We investigated the bias, coverage and MSE of the proposed two-stage and the alternative
mainstream one-stage estimator. When all model assumptions hold the proposed two-stage estima-
tor has similar properties to the one-stage estimator.

We investigated the bias of both estimators in conditions where a direct effect between the
covariate and item(s) of the latent class model are present. The performance of the two estimators
was very similar in these situations as well, namely as the severity of the underlying violations
increases ignoring them leads to bias with both approaches. When analyzing the data with the cor-
rect data generating model the two-stage approach performs well.

2This rule of thumb is based on the assumption that the bivariate residuals follow a chi square distribution with 2 df
that does not hold, yet given the complexities of approximating the distribution of the BVR statistic this rule of thumb is
often used.
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We generated data from models (model PD and PE) where no effect exists between the la-
tent variable and the covariate, only direct effect(s) between the covariate and indicator(s). Ana-
lyzing these data assuming no DE, but only regressing class membership on the covariate intro-
duces a Type 1 error rate above the nominal level. The more unmodeled direct effects are present
the higher the type 1 error rate is ignoring these effects.

An issue to take into account with two-stage estimators is how to account for the uncer-
tainty about the fixed parameters in the calculation of the stage two standard errors. Pseudo ML
estimates have two sources of variability: the variability due to sampling in step two, but also that
of the sampling variability of step one (Gong & Samaniego, 1981). For single level two-stage
LCA models variance estimators that correct for the uncertainty due to the step 1 estimates are
available (Bakk & Kuha, 2018). However simulation studies show that the correction factor is neg-
ligible for models where the measurement model is strong and the sample size large enough. As
such in the current paper we ignore the variability due to the sampling variability in the step one
estimates. The results show that in all conditions while the coverage is marginally lower then for
the one-stage model, the difference is very small.

An alternative stage wise estimator, the bias-adjusted three-step approach has already been
investigated for latent Markov models for longitudinal data that have a similar nested data struc-
ture - units nested in time points. However, while formulas to compute the classification error in
such models are easy to derive based on the LM model assumptions and of the Markov properties,
computation of the classification error probabilities is not as straightforward for “pure" multilevel
data due to the interaction of the individual level latent variable with the group level one; in addi-
tion, the bias-adjusted three-step approach focuses only on the structural model in the third step.
Thus possible misspecifications in the measurement model - like unmodeled direct effects - cannot
be detected. How to extend the three-step approach to multilevel LC modeling can be an interest-
ing topic for future research.
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