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ABSTRACT
We consider estimation of two-level latent class models for clustered data, when the
measurement model for the observed measurement items includes non-equivalence
of measurement with respect to some observed covariates. The parameters of inter-
est are coefficients in structural models for the latent classes given covariates. We
propose a two-step method of estimation. This extends previously proposed meth-
ods of two-step estimation for models without non-equivalence of measurement by
specifying the model used in the first step in such a way that it correctly accounts
for non-equivalence. The properties of these two-step estimators are examined using
simulation studies and an applied example.
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1. Introduction

The methodological research question that is considered in this article is the following:
How can we estimate multilevel latent class models with covariates when there is non-
equivalence of measurement in some of the measurement items, using the two-step
method of estimation? How well do these estimates perform? We begin by briefly
introducing the key terms in this statement.

Latent class (LC) analysis (Goodman, 1974; Lazarsfeld & Henry, 2004) is used to
classify units into subgroups based on multiple observed categorical variables. The LC
model takes these observed variables (items) to be indicators of a categorical latent
variable of interest (latent class). For example, Oser, Hooghe, Bakk, and Di Mari
(2023) used LC analysis to identify types of citizenship norms measured by responses
to multiple survey questions about different democratic values.

In applied LC analysis, substantive research questions commonly focus on associa-
tions between external predictors, or covariates, and the probabilities of belonging to
the different latent classes. This is operationalised in terms of regression models for
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the classes given the covariates. For example, Oser et al. (2023) used socioeconomic
predictors to describe how individuals sort into citizenship norms. The model then
combines two elements: a measurement model for how the items measure the latent
classes, and a structural model for how the latent classes depend on the covariates.

Basic LC modelling assumes that the units of analysis are independent of each other.
This is insufficient when we have hierarchical data where lower-level units (such as
individual respondents) are nested (clustered) within higher-level units (groups). The
nesting can extend to still higher levels, but our discussion is limited to the case of two-
level hierarchical data. It is assumed that units in different groups are independent of
each other, but that lower-level units within the same group need not be independent
even conditional on the covariates.

Within-group dependencies can be accommodated by introducing another latent
variable which varies at the higher level. When it is categorical, i.e. a higher-level
latent class variable, we have a multilevel latent class model (Vermunt, 2003). For ex-
ample, Di Mari, Bakk, Oser, and Kuha (2023) used multilevel LC analysis to identify
citizenship norms within countries, finding two country-level clusters with different
prevalences of the individual-level classes of citizenship norms. The higher-level vari-
able is analogous to continuous random effects in multilevel models which include such
variables (see e.g. Rabe-Hesketh and Skrondal 2022 for examples of them). Multilevel
LC models can include covariates as predictors of both higher- and lower-level latent
classes. Most often substantive interest is focused on the lower level. For instance,
Di Mari et al. (2023) identified socioeconomic predictors of individual-level norms.

We consider likelihood-based estimation of the models. In standard maximum like-
lihood (ML) estimation, or one-step estimation, all the parameters are estimated si-
multaneously. In contrast, stepwise estimation divides estimation of the measurement
model and the structural model into separate steps. The one-step approach has the
standard optimality properties of ML estimation, but it also has serious drawbacks
(see the discussions in Vermunt 2010 and Bakk and Kuha 2018). Practically, it can
be computationally demanding, and will require the same computational effort every
time the model is changed and re-fitted. Conceptually, estimating the measurement
and structural models together has the disadvantage that they will affect each other.
Any changes to the structural model, such as adding or removing covariates or chang-
ing their functional form, will also change the estimated measurement model, and
hence the implied definition of the latent classes. These changes can be so large that
they render comparisons of different structural models effectively meaningless.

Stepwise estimation avoids or reduces the disadvantages of the one-step method.
It begins by estimating just the parameters of the measurement model (step 1). Dif-
ferent stepwise methods differ in what happens next. Three-step estimation assigns
observations to the latent classes based on the estimated measurement model (step 2),
and then fits the structural model for these assigned classes (step 3). Bias-adjusted
three-step estimation employs further adjustments to correct for misclassication bias
that would arise from naive use of step 2 (see the review in Bakk and Kuha 2020 and
references therein).

In contrast, stepwise two-step estimation does not assign predicted latent classes,
but estimates (in its step 2) the structural model directly from a likelihood where
the measurement-model parameters are fixed at their estimates from step 1. Two-step
estimation for LC models was first proposed by Bandeen-Roche, Miglioretti, Zeger,
and Rathouz (1997) and Xue and Bandeen-Roche (2002), and further developed by
Bakk and Kuha (2018). The same idea can also be applied to latent variable models
which have continuous rather than categorical latent variables (Rosseel and Loh 2024;
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Kuha and Bakk 2023).
For multilevel LC models, stepwise methods have been proposed using a bias-

adjusted three-step (Lyrvall, Bakk, Oser, & Di Mari, 2024), an intermediate “two-
stage” (Bakk, Di Mari, Oser, & Kuha, 2022), and the two-step approaches (Di Mari
et al., 2023). We regard the two-step method as the preferred approach because of its
simplicity and good performance in previous studies.

A latent variable model has the property of measurement equivalence if the mea-
surement model for the items depends only on the latent variables but not on any
covariates or observed response variables. Violation of this, where measurement is af-
fected also by observed external variables, is known as measurement non-equivalence,
also known as non-invariance of measurement or differential item functioning (DIF).
It can arise, for example, in cross-national surveys from differences in translation or in
educational testing from differences in familiarity of test questions for different groups
of students which are unrelated to their ability. In the illustrative example that we
consider in Section 5 of this paper, we allow for possible non-equivalence in survey
questions on citizenship norms which may arise from differences in the salience of
different civic activities in countries with higher or lower levels of political freedom.
There is a large literature on issues of non-equivalence in different applications and for
different types of latent variable models (see e.g. Millsap 2011 and Kankaraš, Vermunt,
and Moors 2011, and references therein). Masyn (2017) discusses it for LC models,
and provides definitions and model specifications.

If there is non-equivalence in the measurement, estimation which ignores this will
yield biased estimates also for the structual model. Studies by Asparouhov and Muthén
(2014), Janssen, Van Laar, De Rooij, Kuha, and Bakk (2019) and Di Mari and Bakk
(2018) show that this bias can be large for latent class models. It is thus often crucial
to correctly account for any non-equivalence in model specification and estimation.

One-step estimation in this situation is still standard ML estimation, now for a
model which includes covariates also in the measurement model. For stepwise meth-
ods, Vermunt and Magidson (2021) described how bias-adjusted three-step estimation
can be implemented for single-level LC models with non-equivalence of measurement.
Their key point is to specify the model for its step 1 correctly. This should include
those covariates which affect the measurement model, and include them in both the
measurement model and the structural model (they should then also be appropriately
accounted for in steps 2 and 3).

Vermunt and Magidson (2021) also note that what they propose for three-step
estimation would also be the correct form for step 1 of the two-step method. In this
paper we follow up on that point. We combine the elements from previous literature
described above, and extend them to develop two-step estimation which allows for non-
equivalence of measurement and which can be applied to single-level and multilevel
LC models.

The model is defined in Section 2 of the paper, and in Section 3 we describe how the
estimation is implemented. We then evaluate the performance of the method through
simulation studies in 4 and illustrate it further with an empirical example in Section 5.

2. Multilevel latent class model with covariates and measurement
non-equivalence

Here we give a formal definition of the model that was outlined in Section 1. We
define its elements in steps, finishing with the introduction of non-equivalence to the
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measurement model.
Consider hierarchical data where lower-level units (individuals) j = 1, . . . , ni are

nested in higher-level units (groups) i = 1, . . . , I. Let Yijh, h = 1, . . . ,H, be the
values of H observed variables (items) for lower-level unit j in higher-level unit i, and
define Yij = (Yij1, . . . , YijH)′. Here each Yijh is a categorical variable, with possible
values r = 1, . . . , Rh. Let Zij = (ZH′

i ,ZL′
ij )

′ be a vector of observed covariates, where

the variables in ZL
ij (lower-level covariates) can vary between different lower-level

units within the same higher-level unit but ZH
i (higher-level covariates) vary only

between the higher-level units. We take ZH
i to include a constant 1, thus introducing

an intercept term to all the regression models described below.
The items Yij are regarded as observed indicators of a discrete latent variable

Xij with categories (latent classes) t = 1, . . . , T . The standard latent class (LC)
model specifies the joint probability function of Xij and Yij as P (Yij , Xij) =
P (Xij)P (Yij |Xij). This has two basic elements, the structural model P (Xij) for the
probabilities of the latent classes, and the measurement model P (Yij |Xij) for how
the items measure the latent classes. We make throughout the assumption, which is
standard in LC analysis, that Yijh for different h are conditionally independent of each
other given the latent class. The measurement model can then be written as

P (Yij |Xij) =

H∏
h=1

P (Yijh|Xij). (1)

Next, the model is extended to accommodate the hierarchical structure of the data.
This is done by expanding the structural model to P (Xij ,Wi) = P (Wi)P (Xij |Wi),
where Wi is another categorical latent class variable, with categories m = 1, . . . ,M .
It varies only between higher-level units i, so we refer to it as the higher-level LC
variable and Xij as the lower-level LC variable. It is assumed that Yij and Wi are
conditionally independent given Xij , and that Xij for the same i are conditionally
independent given Wi. Averaged over P (Wi), however, values of Xij for different j
within the same group i will be associated because they share the same Wi. In this
sense, Wi is a categorical analogy of continuous random effects in multilevel (random
effects) models, and the model is referred to as a multilevel (here two-level) LC model.

We then introduce covariates to the structural model, as

P (Xij ,Wi|Zij) = P (Wi|ZH
i )P (Xij |Wi,Zij), (2)

noting that higher-level classes Wi can only depend on higher-level covariates ZH
i

but lower-level classes Xij can depend on both lower- and higher-level covariates. We
specify these models as the multinomial logistic models

P (Wi = m|ZH
i ) =

exp(α′
mZH

i )∑M
l=1 exp(α′

lZ
H
i )

and (3)

P (Xij = t|Wi = m,Zij) =
exp(γ ′

t|mZij)∑T
s=1 exp(γ ′

s|mZij)
, (4)

where αm and γt|m for m = 1, . . . ,M and t = 1, . . . , T are parameter vectors, and
α1 = 0 and γ1|m = 0 for all m for identifiability. The specification may include
constraints on the parameters, for example when some of them are 0 or when matching
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elements of γt|m are equal for all m. Often the focus of substantive interest is on
model (4) for the lower-level latent class Xij , and the higher-level class Wi is regarded
just as a random effect to allow for within-group associations between Xij . In that
case, model (3) will often include just the intercept terms αm = αm.

The model defined by (1) and (2) is a standard multilevel LC model with covariates
(Vermunt 2003; Bakk et al. 2022; Di Mari et al. 2023; Lyrvall et al. 2024). A key
feature of it is that the measurement model (1) does not depend on Zij . This can be
relaxed by introducing covariates also to this, as

P (Yij |Xij ,Zij) =

H∏
h=1

P (Yijh|Xij ,Z
∗
ijh)

where the models for the individual items are multinomial logistic models

P (Yijh = r|Xij = t,Z∗
ijh) =

exp(δ′hr|tZ
∗
ijh)∑Rh

q=1 exp(δ′hq|tZ
∗
ijh)

(5)

for r = 1, . . . , Rh, and δhq|t are parameter vectors with δh1|t = 0 for all h, t. This kind
of measurement model for item Yh is non-equivalent with respect to the covariates in
Z∗
ijh. We write this with the subscript h to denote only those elements of Z which do

affect the measurement model for the hth item. This is useful for clarity, because it
is very common that these include only a subset of the variables in Z, and that they
are different for different items. There may be parameter constraints, for example so
that the coefficients of Z∗

ijh (except for the intercept) do not depend on latent class
t, or that even for the same h they may be non-zero for some latent classes but zero
for others. If Z∗

ijh includes only the constant 1, measurement of item Yijh is equivalent
with respect to all of the covariates.

Let Yi = (Y′
i1, . . . ,Y

′
ini

)′ and Zi = (Z′
i1, . . . ,Z

′
ini

)′ denote all the observed values
of the items and the covariates for higher-level unit i. The model for these observed
data is obtained by averaging over the distributions of the latent Wi and Xij , as

P (Yi|Zi;θ) (6)

=

M∑
m=1

(
P (Wj = m|ZH

i ;θ2)

×
ni∏
j=1

{
T∑
t=1

P (Xij = t|Wj = m,Zij ;θ2)

[
H∏

h=1

P (Yijh|Xij = t,Z∗
ijh;θ1)

]}
where we have also introduced parameters θ = (θ′

1,θ
′
2)

′ into the notation. Here θ1

denotes all the parameters of the measurement model, i.e. the δs in (5), and θ1 all the
parameters of the structural model, i.e. the αs and γs in (3) and (4).

Model (6) is a multilevel (here two-level) latent class model with covariates and
with non-equivalence of measurement. What we examine in this paper is two-step
methods of estimating the parameters of this model, with focus on the structural pa-
rameters θ2. In the general presentation of the method in Section 3 we take the choice
of Z∗

ij1, . . . ,Z
∗
ijH as given, i.e. we assume that it has already been determined which

covariates are needed to allow for non-equivalence of measurement in different items.
Model selection procedures for deciding on this are described by Masyn (2017) and
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Vermunt and Magidson (2021); an illustration of them is included in our applied ex-
ample in Section 5. We also assume that the specification of the measurement model
is such that the parameters of the structural model are formally and practically iden-
tified. This requires, in essence, that the non-equivalence should not be too extensive,
at a minimum that it does not affect all of the items in Yij .

3. Two-step estimation of the model parameters

The Yi for different higher-level units i are taken to be conditionally independent
given Zi. The log-likelihood function for the model that was defined in Section 2 can
then be written as ℓ(θ) = ℓ(θ1,θ2) =

∑I
i=1 logP (Yi|Zi;θ), where P (Yi|Zi;θ) is given

by (6) combined with (3)–(5).
One-step maximum likelihood (ML) estimates of the parameters are obtained by

maximizing ℓ(θ) with respect to all of θ at once. In contrast, two-step estimation di-
vides the estimation into two steps. In its step 1, an estimate θ̃1 of the measurement
parameters is obtained. In step 2, estimates θ̃2 of the structural parameters are ob-
tained by maximizing ℓ(θ̃1,θ2) with respect to θ2, i.e. using the same log-likelihood
as for one-step estimation but treating now the measurement parameters θ1 fixed at
their estimated values θ̃1 from step 1.

This idea of two-step estimation has been examined for single-level latent class
models by Bakk and Kuha (2018) and for multilevel LC models by Di Mari et al. (2023).
What is new here is that we want to extend it to the case where the model includes non-
equivalence of measurement. The key question is then how step 1 should be carried
out. The general answer is that it should use the simplest model that allows valid

estimation of θ1. To present this, we write now Zij = (Z†′
ij ,Z

∗′
ij)

′, where Z∗
ij denotes

the union of Z∗
ijh over h, i.e. those covariates that appear in the measurement model

for at least one item, and Z†
ij denotes those covariates that do not appear anywhere

in the measurement model. Let p(Z†
ij |Z∗

ij) denote the conditional joint distribution of

Z†
ij given Z∗

ij . The conditional distribution for the latent class variables and the items
given Z∗

ij only is obtained by marginalising over this, as

P (Yij , Xij ,Wi|Z∗
ij ;θ1,θ

∗
2)

=

[∫
P (Xij ,Wi|Z†

ij ,Z
∗
ij ;θ2) p(Z

†
ij |Z

∗
ij) dZ

†
ij

]
P (Yij |Xij ,Z

∗
ij ;θ1)

= P (Xij ,Wi|Z∗
ij ;θ

∗
2)P (Yij |Xij ,Z

∗
ij ;θ1)

= P (Wi|ZH∗
i ;θ∗

2)P (Xij |Wi,Z
∗
ij ;θ

∗
2)P (Yij |Xij ,Z

∗
ij ;θ1). (7)

This is of the same multilevel LC form as the full model given Zij which led to (6).
The two have different structural models, since (7) is conditional on Z∗

ij only (so we
denote its structural parameters by θ∗

2 rather than θ2). Crucially, however, both have
the same measurement model P (Yij |Xij ,Z

∗
ij ;θ1), with the same θ1. The measurement

parameters θ1 can thus be estimated from this, using an observed-data log likelihood
that is obtained by marginalising (7) over Xij and Wi, This is the key result that
was derived by Vermunt and Magidson (2021) for step 1 of three-step estimation for
single-level LC models, and it holds also for two-step estimation for the multilevel
models that we consider here. Vermunt and Magidson (2021) also observed that the
same result holds even if the model includes observed variables that are treated as
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distal outcomes rather than covariates, even when they depend on the items Yij ; this
is because they would be integrated out from an expression like (7). If the model has
full measurement equivalence, i.e. Z∗

ij includes only the constant 1, (7) integrates out
all the covariates. The step-1 model is then a multilevel LC model without covariates,
as in Di Mari et al. (2023).

We note that this derivation involves one approximation. This is that if the struc-
tural models given Zij are multinomial logistic models as in (3) and (4), they will in
general be only approximately of a multinomial logistic form given a smaller set Z∗

ij
(unless this is empty or includes only a single categorical variable). We do not expect
that this will have a meaningful impact on the quality of the step-1 estimates of θ1 (we
note also that the same inconsistency arises whenever any multinomial logistic models
are fitted given different sets of covariates, even for observed response variables).

In summary, when there is non-equivalence of measurement with respect to covari-
ates Z∗

ij , step 1 of two-step estimation should be for a model which includes these Z∗
ij

in both the structural model and the measurement model. This is still simpler than
one-step estimation if Z∗

ij is smaller than the full set of covariates Zij . Estimates θ̃1

of the measurement parameters from this step 1 are carried forward to step 2 (and
estimates of the structural parameters θ∗

2 are discarded). Two-step estimates θ̃2 of
the structural parameters are then obtained from step 2 by maximizing ℓ(θ̃1,θ2) with
respect to θ2.

For estimation of standard errors of θ̃2, two broad approaches are possible. One of
them accounts for sampling uncertainty in θ̃1 by including a term corresponding to
this in the standard error calculation (Bakk and Kuha 2018; Di Mari et al. 2023). The
other, simpler approach, omits this term, in effect taking the estimated measurement
model from step 1 as an a priori fixed definition of the latent classes (see Kuha and
Bakk 2023 for a discussion of these options). In our applied example in Section 5 we
use this simpler approach to calculate the standard errors.

4. Simulation study

4.1. Design

We use a simulation study to examine the performance of the proposed two-step
method of estimation for multilevel latent class models with measurement non-
equivalence (abbreviated MNE below). We focus on results for estimated parameters
of the structural model for the lower-level classes (model (4) in Section 2), because
this is typically the focus of substantive research questions in applications of multilevel
LC models. Our primary question of interest is how well the estimates perform when
MNE is correctly specified in the measurement model, and a secondary question is
how much bias they have when MNE is incorrectly ignored and equivalence of mea-
surement is assumed. For both of these questions, we also use one-step estimation as
a comparator.

Two main factors are varied in the simulation settings: separation of the latent
classes (i.e. the strength of the measurement model) and magnitude of the MNE. It
is well known for models without MNE that estimates behave better when the classes
are more clearly separated (Bakk & Kuha, 2018; Di Mari et al., 2023; Lyrvall et al.,
2024; Vermunt, 2010), and we would expect the same to be the case here. Similarly,
we expect that estimation is more demanding if non-equivalence is more pronounced.
A question of interest is then how large these differences may be.
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Each simulated sample has I = 100 higher-level units i and ni = 100 lower-level
units j in each i. Each higher-level unit belongs to one of two known groups, identified
by an observed variable Gi = 0, 1. The value of Gi is drawn at random for each i, with
probability P (Gi = 1) = 0.5. Non-equivalence of measurement may exist between these
groups. This structure might correspond, for example, to a multicultural educational
study where the higher-level units are schools, lower-level units are students, and the
two groups are two different languages of instruction in the schools.

We consider models with T = 3 lower-level latent classes (categories of Xij) and
M = 2 higher-level latent classes (categories ofWi). Model (3) forWi has no covariates,
i.e. ZH

i = 1, and we set P (Wi = 1) = 0.6 and P (Wi = 2) = 0.4. Model (4) for Xij

has Gi as its only covariate, i.e. i.e. Zij = (1, Gi)
′. The intercepts of this model are

set so that, averaged over the distribution of Gi, we have P (Xij = 1|Wi = 1) =
P (Xij = 3|Wi = 2) = 0.18, P (Xij = 2|Wi = 1) = P (Xij = 2|Wi = 2) = 0.31, and
P (Xij = 3|Wi = 1) = P (Xij = 1|Wi = 2) = 0.51.

In all of the simulations, in the model for Xij all coefficients of Gi (i.e. in all γt|m
in (4) for t = 2, 3 and m = 1, 2) are equal to 0.5. The estimated model correctly
assumes that these coefficients do not vary by the higher-level class m, so that the
model has two estimable coefficients of Gi. These are the parameters we focus on,
considering all of their estimates together.

The lower-level latent class is measured byH = 6 binary items Yijh for h = 1, . . . ,H,
each with values 0 and 1. Consider the item response probabilities πh(t)g = P (Yijh =
1|Xij = t, Gi = g). Here for simplicity we write Gi in place of the covariates Z∗

ijh

because in all cases where there is MNE we have Z∗
ijh = (1, Gi) (and when there is

no MNE, Z∗
ijh = 1 and πh(t)0 = πh(t)1). In all settings πh(t)g has a high value (> 0.5)

for all items h =1–6 in the first lower-level class (t = 1), for items 1–3 in class t = 2
and for no items in class t = 3, and low probabilities (≤ 0.5) otherwise. In different
simulations we then allow MNE by group Gi for some of the πh(t)g. The strength of
class separation and magnitude of MNE are determined by how these probabilities
vary and how far they are from 0.5.

We consider simulation conditions with weaker and stronger lower-level class sepa-
ration separately for low and high values of πh(t)g, resulting in four settings for class
separation. These are combined with three conditions for MNE — none, weak and
strong — resulting in 12 simulation conditions in total. When there is MNE, it affects
the measurement models of some items in latent classes 1 and 2 but none of them in
class 3. In the weaker MNE condition, classes 1 and 2 have MNE for items h = 1, 2.
In the stronger condition, class 1 has MNE in items 1–4 and class 3 in items 1–3.
Thus MNE here affects only those probabilities πh(t)g that are greater than 0.5. In
each case its effect is to shift the response probability down by 0.1 for group 1, i.e.
πh(t)1 = πh(t)0 − 0.1. The resulting values of the response probabilities in the twelve
simulation conditions are summarised in Table 1.

For each of the conditions, we generate 250 random samples. The data analysis is
carried out in Mplus (Muthén & Muthén, 2017) and R (R Core Team, 2024), using the
package MplusAutomation (Hallquist & Wiley, 2018).

4.2. Results

Tables 2 and 3 show the simulation results, in the form of the average bias, root
mean squared error (RMSE) and median absolute error (MAE) of estimates over the
250 simulations in each of the simulation scenarios. As noted above, the parameters
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considered here are the two coefficients of Gi in the model for the lower-level class Xij ,
both with the true value of 0.5. We consider their estimates together, so that we have
500 estimated values for each simulation setting.

Consider first estimation where measurement non-equivalence is ignored, i.e. when
both two-step and one-step estimates are calculated under the assumption of full
equivalence of measurement. These results are shown in Table 2. When the true model
has no MNE, there is little difference between the two estimators and both are es-
sentially unbiased. Both of them become increasingly seriously biased when the true
measurement model involves increasing levels of MNE. This bias is also larger when
class separation is weaker, i.e. when the measurement model is weak. Here there are
also noticeable differences between the two estimators, in that the two-step estimates
have mostly smaller bias and smaller RMSE than the one-step estimates, especially in
the more difficult low-separation settings. The same is true for MAEs, showing that
the poorer performance of the one-step estimates is fairly general and not just due to
a small number of extreme values of the estimates.

Table 3 shows the results in the eight simulation conditions where MNE is present,
when the estimators are based on a correct specification for the MNE. Both estima-
tors again perform better when the separation between the latent classes is stronger.
This is as expected, and consistent with previous results for estimation in situations
with no MNE (e.g. Vermunt 2010; Bakk and Kuha 2018). Here the most challenging
conditions are the ones where low item response probabilities (i.e. the ones indicated
by ‘L’ in Table 1) are 0.5, so that they are not very clearly distinguished from the
higher response probabilities. The estimators perform reasonably well, and in most
cases essentially similarly. However, some differences between them emerge when class
separation is weak and there is a large amount of MNE. Here the two-step estimates
have a little more bias, but clearly lower RMSE and MAE than the one-step estimates.
In these most difficult situations a large proportion of the one-step estimates are thus
quite far from the true parameters, whereas two-step estimation substantially reduce
these extremes.

5. Empirical example

We illustrate the proposed two-step method of estimation for multilevel LC mod-
els with non-equivalence of measurement with an analysis of cross-national data on
citizenship norms among adolescents. The data come from the International Civic
and Citizenship Education Study 2016 (Schulz et al., 2018), which was conducted
by the International Association for the Evaluation of Educational Achievement, and
are accessed via the R package multilevLCA (Lyrvall, Di Mari, Bakk, Oser, & Kuha,
2023). These data have been used in previous substantive studies of citizenship norms
(Hooghe & Oser, 2015; Hooghe, Oser, & Marien, 2016; Oser & Hooghe, 2013; Oser et
al., 2023). For details on data cleaning and recoding, see [reference with DOI to be
added].

The survey asked 14-year-old adolescents to state their level of agreement on whether
a set of activities are important for a person to be considered a good adult citizen.
We include responses to five such questions, related to activities that correspond to
engaged citizenship: participation in local activities (we label this item local), engage-
ment in political conversations (discuss), show of support for environmental protection
activities (envir), promotion of human rights (rights), and participation in peaceful
protests (protest). The responses are coded in a binary form, as 1 if the respondent
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regarded the activity as very or quite important for being a good adult citizen, and 0
if they thought it not very or not at all important.

These five binary variables are the measurement items (Yijh in the notation above).
Individual-level latent classes (Xij) measured by them will characterise different pro-
files of what an adolescent considers important in a good citizen. We have hierarchical
data where individual children (lower-level units j) are nested within countries (higher-
level units i). We consider structural models where the proportions of Xij may vary
by two country characteristics (non-constant covariates in Zij = Zi), the country’s
wealth and its civic freedom, specifically press freedom. We do not include covariates
for the higher-level latent classes Wi, so ZH

i in the notation of Section 2 includes
only a constant. Wealth is measured by logarithm of gross domestic product in U.S.
dollars (covariate lnGDPusd), and a covariate on press freedom is based on the 2016
World Press Freedom Index (PFI) by Reporters Without Borders. Civic freedom has
previously not been considered as an explanatory variable in the latent class analysis
citizenship norms literature. For clarity of this illustrative example, we consider data
from two groups of countries which have very different levels of press freedom. Five
of the countries are among those with the highest levels of PFI — Finland (ranked
1st), Netherlands (2), Norway (3), Denmark (4), and Sweden (8) — and three among
the lowest — Colombia (134), Russia (148), and Mexico (149). We define a dummy
variable (lowPFI ) which is 1 for the countries in the low-PFI group and 0 for the
high-PFI group1. The sample sizes range from 2,728 (Netherlands) to 7,138 (Russia),
with a total combined sample of 40,837 respondents.

We also allow for the possibility of MNE in some of the items, with respect to
lowPFI. The two groups of countries defined by it have very different constraints on
political expression, and the different activities mentioned in the survey items may
have different relative salience for adolescents’ perceptions on what it takes to be a
good citizen. In particular, we speculate that this may be the case for support for
environmental protection, promotion of human rights, and participation in peaceful
protests, which are more public and/or politically contentious activities. We there-
fore consider the possibility of MNE in these items. The citizenship norms literature
has not previously analyzed civic freedom as a potential confounding variable in the
identification of latent classes.

We first identified the optimal number of latent classes. This was based on the
Bayesian information criterion (BIC) combined with considerations of substantive clar-
ity of the estimated LC structure. A general recommendation is to perform this first
step of model selection without covariates and under the assumption of equivalence of
measurement (Masyn, 2017). We first estimated single-level models with one to five
latent classes, and concluded that the four-class specification was preferred. We then
estimated two-level LC models, with individual countries as the higher-level units,
still with equivalence of measurement and without covariates. With four lower-level
classes, the best BIC value was obtained for a model with three higher-level classes.
This multilevel model is preferred to the four-class single-level model, indicating that
allowing for the hierarchical clustering structure is desirable. We select the two-level
model with four high-level and three low-level classes for the rest of the modeling.

1An alternative analytical approach would be to use the original continuous PFI score, which is ranging from

0 to 100. In this empirical example, we focus on the binary low -high classification for ease of interpretation.
Because the variation in PFI score between the five countries is substantially larger between these two groups

than within these groups, we expect this choice of analytical approach has little qualitative impact on the
results (among the low-PFI countries, the PFI scores are 55.89, 50.97, and 50.67 for Colombia, Russia, and
Mexico, respectively; among the high-PFI countries, they are 91.41, 91.24, 91.21, 91.11, and 87.67 for Finland,

Netherlands, Norway, Denmark, and Sweden, respectively).
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In the second step of model selection, we add MNE with respect to lowPFI to this
multilevel model. We consider it for all combinations of the three items envir, rights,
and protest, both when allowing MNE to vary across classes and when restricting MNE
to be invariant (on the logit scale) across classes (i.e. constraining the coefficient of
lowPFI in δhr|t = δhr in equation (5) not to depend on latent class t). Here lowPFI,
i.e. the covariate in Z∗

ij , is included also in the model for the latent class variable Xij .
The best BIC value is obtained for a model which includes class-invariant MNE in two
items, envir and protest. In particular, it is preferred to a model with full equivalence
of measurement. This indicates that MNE is present in the data.

Estimates of the measurement model parameters θ1 for the selected model from
this step are also the step-1 estimates of these parameters for two-step estimation,
as discussed in Section 3. The item response probabilities implied by this model are
shown in Table 4. The first class places importance on all five items. The second class
emphasizes the items related to specific topics (local, envir, rights), but not as much
or at all the ones related to method of engagement (discuss, protest). Individuals
belonging to the third class have middling probabilities of endorsing each of the items,
and those in the fourth class do not place importance on any of them as criteria for
a good adult citizen. We label class 1 Maximal, class 2 Topic, class 3 Medium, and
class 4 Unengaged. The same interpretation of the classes would also be obtained
from a model which constrains the measurement models to be fully equivalent, item
probabilities from which are also shown in Table 4 for comparison. The implications
for allowing for MNE are seen in the probabilities for items envir and protest in the
selected model. Here in all classes the probabilities of endorsing these items are higher
in countries with low press freedom. In other words, adolescents in countries with low
levels of press freedom are more uniformly likely to regard support for environmental
protection and participation in peaceful protests as characteristics of a good adult
citizen than are adolescents in countries with more press freedom.

Table 5 shows the estimated proportions of the latent classes after this first step,
again for the selected model and for the full equivalence model for comparison. For
the selected model, these probabilities are averaged over the sample proportions of
the two values of lowPFI. In broad terms, the most noticeable difference between
the higher-level classes is that one of them (class 2 in the table) has substantially
higher probabilities than the other two classes of individuals belonging to the two
lower-level classes (class Medium and Unengaged) which place least importance on
these items as indicators of good citizenship. Averaged over the probabilities of the
higher-level classes, the estimated proportions of individuals in the lower-level classes
in the selected model are 0.37, 0.26, 0.29 and 0.07 for the Maximal, Topic, Medium
and Unengaged classes respectively.

Finally, we estimate the structural model for the individual-level latent class given
the covariates lowPFI and lnGDPusd. The estimated coefficients of this multinomial
logistic model are reported in Table 6, again showing results based on the selected
measurement model with MNE and, for comparison, a model with full measurement
equivalence. Table 6 shows two-step estimates of the parameters of the structural
model, estimated as described in Section 3, and with the measurement parameters
fixed at their estimated values from Table 4. The reference category for a respondent
is here the class Unengaged. Considering the estimates from the selected model, the
results show that adolescents living in countries with less press freedom are increas-
ingly more likely to have norms that emphasize more activities, relative to having
“unengaged” norms, even after controlling for GDP. The coefficients of lnGDPusd in-
dicate that individuals in higher-GDP countries are most likely to belong to the class
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Maximal which regards all the activities as important for good citizenship, but less
likely to belong to the class Topic which de-emphasises the role of discussion only and
(to a lesser extent) participation in peaceful protests. These differences between the
more engaged classes (Maximal and Topic) and the less engaged classes (Medium and
Unengaged) are substantively large and statistically significant (by conventional crite-
ria) with respect to both covariates. In contrast, neither covariate makes a significant
difference on the distinction between the two less engaged classes.

Comparing the estimates under the two specifications on measurement, we can see,
in particular, that the coefficients of lowPFI are consistently less strong when we
allow for measurement non-equivalence. This happens because some of the association
between lowPFI and the responses is accounted for by measurement differences, that is,
by the fact that the specific activities that have MNE are overall relatively more salient
for adolescents in countries with low press freedom. where lowPFI is 1. Even after
accounting for this, however, it is clear that adolescents in countries with low levels of
press freedom are substantially more likely to be of the view that good citizenship is
something that encompasses a larger number of activities.

6. Concluding remarks

We proposed a two-step estimation approach for multilevel latent class models with
covariates in the presence of measurement non-equivalence. The method involves esti-
mating the measurement model in the first step, and then holding its parameters fixed
at their estimated values in the second step where the structural model for the classes
given covariates is estimated. The key modification that is needed here, compared to
two-step estimation of models with full measurement equivalence, is that covariates
which create non-equivalence of measurement need to be included already in the first
step. Their direct effects on measurement indicators are estimated there, while their
coefficients (and those of any other covariates) in the structural model are estimated
in the second step.

From a simulation study we observed that the proposed estimator performs generally
well when the model is correctly specified, and essentially as well as the one-step maxi-
mum likelihood estimator which estimates all parameters at once. The performance of
both estimators deteriorates to some extent in settings where the measurement model
is weak and there is strong non-equivalence of measurement. The simulations also
gave some evidence that two-step estimates are more robust to model misspecification
which occurs when the measurement is incorrectly taken to be equivalent.

We have argued that two-step estimation has in principle two kinds of advantages
over one-step estimation, the computational and the conceptual. The conceptual one
is that estimating and fixing the measurement model before we proceed to estimate
structural models for the latent classes means that the definition of the classes is then
also fixed, and will not change even if we estimate and compare multiple different
structural models. This advantage holds unchanged even when the models involve
measurement non-equivalence. The computational advantage of two-step estimation,
on the other hand, is somewhat reduced here. This is because the first step now includes
also those covariates that are needed to account for the non-equivalence, making this
step too more complex in comparison to when there is an absence of non-equivalence. It
remains the case, however, that thereafter estimation is less demanding than it would
be in one-step estimation. This is because in the two-step approach it will involve only
the structural parameters, whereas the measurement parameters are fixed rather than
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repeatedly re-estimated.
As always, some questions on the properties and procedures of these methods are left

open. We mention in particular questions of model selection. For multilevel latent class
models with measurement non-equivalence this involves multiple dimensions: choosing
the number of latent classes at the lower and higher levels, as well as determining
which covariates are involved in non-equivalence and in what ways. Decisions on these
dimensions could affect each other. In this paper we did not examine this question
but employed a particular approach in line with previous literature. However, more
systematic understanding of different approaches that could be used here would still
be desirable.
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Patterns of response probabilities:

Response probability
πh(t)g = P (Yh = 1|X = t, G = g)

for item (h)
Class (t) Group (g) 1 2 3 4 5 6

1 0 H0a H0a H0b H0b H H

1 H1a H1a H1b H1b H H

2 0 H0a H0a H0b L L L

1 H1a H1a H1b L L L

3 0 L L L L L L

1 L L L L L L

Values of the probabilities in different simulation conditions:

Separation Separation Measurement
Condition (low πh(t)g) (high πh(t)g) non-equiv. (H0a, H1a) (H0b, H1b) H L

1 Weak Weak None 0.8 0.8 0.8 0.5

2 Weak Strong None 0.9 0.9 0.9 0.5
3 Strong Weak None 0.8 0.8 0.8 0.2
4 Strong Strong None 0.9 0.9 0.9 0.1

5 Weak Weak Weak (0.8, 0.7) 0.8 0.8 0.5
6 Weak Strong Weak (0.9, 0.8) 0.9 0.9 0.5
7 Strong Weak Weak (0.8, 0.7) 0.8 0.8 0.2

8 Strong Strong Weak (0.9, 0.8) 0.9 0.9 0.1

9 Weak Weak Strong (0.8, 0.7) (0.8, 0.7) 0.8 0.5

10 Weak Strong Strong (0.9, 0.8) (0.9, 0.8) 0.9 0.5
11 Strong Weak Strong (0.8, 0.7) (0.8, 0.7) 0.8 0.2
12 Strong Strong Strong (0.9, 0.8) (0.9, 0.8) 0.9 0.1

Table 1. Values of the item response probabilities in different conditions considered in the simulations. In
the lower table, two values for (H0a, H1a) and/or (H0b, H1b) indicate that the values of these probabilities

are different in groups g = 0, 1, i.e. that there is measurement non-equivalence in the corresponding part of the

model.
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Class separation for True level of measurement non-equivalence
None Weak Strong

(low πh(t)g) (high πh(t)g) One-step Two-step One-step Two-step One-step Two-step
Mean bias:
Weak Weak 0.001 −0.012 0.263 0.055 0.743 0.256
Weak Strong 0.003 −0.002 0.031 0.073 0.153 0.258
Strong Weak −0.003 −0.003 0.028 0.027 0.128 0.126
Strong Strong 0.000 −0.001 0.009 0.008 0.058 0.057
Root mean squared error :
Weak Weak 0.125 0.121 1.238 0.412 1.888 0.741
Weak Strong 0.088 0.086 0.312 0.267 0.520 0.480
Strong Weak 0.067 0.067 0.137 0.135 0.225 0.218
Strong Strong 0.058 0.058 0.079 0.079 0.118 0.116
Median absolute error :
Weak Weak 0.084 0.080 0.533 0.361 0.930 0.683
Weak Strong 0.055 0.057 0.288 0.244 0.514 0.438
Strong Weak 0.048 0.048 0.116 0.114 0.181 0.168
Strong Strong 0.036 0.036 0.059 0.059 0.090 0.089

Table 2. Estimation assuming full equivalence of measurement. Mean bias, root mean squared error (RMSE)
and median absolute error (MAE) of two-step and one-step estimates of the structural parameters. The results

are across the 2×250 estimates of two coefficients of the covariate G (both with true value of 0.5) in the model

for lower-level latent class X, over 250 simulation replications in each of the twelve simulation conditions in
Table 1.
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Class separation for Level of measurement non-equivalence
Weak Strong

(low πh(t)g) (high πh(t)g) One-step Two-step One-step Two-step
Mean bias:
Weak Weak 0.002 −0.021 −0.066 −0.118
Weak Strong 0.003 −0.011 −0.008 −0.101
Strong Weak −0.003 −0.006 −0.002 −0.056
Strong Strong −0.001 −0.001 0.004 −0.007
Root mean squared error :
Weak Weak 0.159 0.127 0.560 0.187
Weak Strong 0.098 0.086 0.222 0.134
Strong Weak 0.072 0.066 0.103 0.087
Strong Strong 0.059 0.058 0.060 0.054
Median absolute error :
Weak Weak 0.101 0.086 0.287 0.124
Weak Strong 0.069 0.059 0.139 0.109
Strong Weak 0.049 0.045 0.067 0.064
Strong Strong 0.037 0.035 0.041 0.035

Table 3. Estimation under correctly specified model for measurement non-equivalence (MNE). Mean bias,
root mean squared error (RMSE) and median absolute error (MAE) of two-step and one-step estimates of the

structural parameters. The results are across the 2× 250 estimates of two coefficients of the covariate G (both

with true value of 0.5) in the structural model for lower-level latent class X, over 250 simulation replications
in each of the eight simulation conditions in Table 1 that involve MNE.
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Model with full
Selected model measurement equivalence

Item Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 1 Cl. 2 Cl. 3 Cl. 4
Maximal Topic Medium Uneng. Maximal Topic Medium Uneng.

local 0.981 0.961 0.600 0.096 0.980 0.961 0.660 0.113
discuss 0.953 0.000 0.294 0.074 0.981 0.001 0.298 0.091
rights 0.988 0.988 0.668 0.000 0.985 0.981 0.730 0.032

envir 0.984 1.000 0.772 0.210
lowPFI= 0 0.977 0.998 0.693 0.166
lowPFI= 1 0.987 0.999 0.796 0.255

protest 0.879 0.668 0.360 0.065
lowPFI= 0 0.831 0.562 0.330 0.035
lowPFI= 1 0.885 0.666 0.434 0.054

Table 4. Item response probabilities for the four lower-level (individual-level) classes, describing different

profiles of engaged citizenship norms. The probabilities are shown for a model where the measurement models
of items envir and protest are non-equivalent with respect to the binary covariate lowPFI (countries with high

vs. low levels of press freedom), and for a model where all the measurement probabilities are equivalent across

countries.
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Model with full
Selected model measurement equivalence

Higher-level class (proportion) Higher-level class (proportion)
Lower-level class 1 (0.500) 2 (0.375) 3 (0.125) 1 (0.500) 2 (0.375) 3 (0.125)
Maximal 0.467 0.290 0.236 0.428 0.189 0.289
Topic 0.251 0.190 0.543 0.233 0.151 0.549
Medium 0.226 0.408 0.185 0.273 0.493 0.141
Unengaged 0.055 0.112 0.036 0.066 0.167 0.021

Table 5. Estimated proportions of the three higher-level (country-level) latent classes, and of the four lower-

level (individual-level) latent classes within the higher-level classes. The probabilities are shown for the selected
model where the measurement models of items envir and protest are non-equivalent with respect to the binary

covariate lowPFI (and averaging over the sample distribution of this variable) and for a model where all the

measurement probabilities are equivalent across countries.

20



Coefficient (in model vs. class Unengaged)
Model with full

Selected model measurement equivalence
Covariate Maximal Topic Medium Maximal Topic Medium

lowPFI 0.963∗∗∗ 1.657∗∗∗ 0.423 1.125∗∗∗ 1.987∗∗∗ 0.619∗∗∗

lnGDPusd 0.561∗∗∗ −0.371∗∗ 0.184 0.516∗ −0.440∗ 0.059

Table 6. Estimated coefficients of the covariates lowPFI (dummy variable for countries that have low Press

Freedom Index) and lnGDPusd (country’s log GDP in US dollars) in a multilevel model for individual-level

latent classes. These estimates are from the second step of two-step estimation. The measurement model for
the items given the latent classes is fixed at the estimated parameters of the selected model which allows for

measurement non-equivalence in two items (on the left) or of a model where all the measurement probabilities

are equivalent across countries (on the right). The fixed measurement probabilities of these two choices are as
shown in Table 4.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001
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